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LOCATION DATA

smartphone sensor data (GPS locations), online “check-ins”....

Example applications:
Ecommerce: efficient parcel delivery
Psychological/behavioral profiling
Customer relationship management
Political party preference & orientation
Daily habits, interests & preferences
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LOCATION DATA

smartphone sensor data (GPS locations), online “check-ins”....

Example applications:
Ecommerce: efficient parcel delivery
Psychological/behavioral profiling
Customer relationship management
Political party preference & orientation
Daily habits, interests & preferences

Contact-tracing apps raise privacy fears
Financial Times, April 2020
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SOCIAL MEDIA & BROWSING DATA

Facebook/Instagram “likes”, Twitter posts, online reviews/blogposts, search
queries,...

Example applications:
Psychological/behavioral profiling
Product interest & online targeted advertising
Political party preference & orientation
Behavioral credit scoring
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SOCIAL MEDIA & BROWSING DATA

Facebook/Instagram “likes”, Twitter posts, online reviews/blogposts, search

queries,...

Extravert Ad Introvert Ad

Example applications: 3 sj
Psychological/behavioral profiling : /?‘ -
Product interest & online targeted advertising Somi onent b bk
Political party preference & orientation Advertisers can target you

Behavioral credit scoring psychologically based on a single
Facebook like, study finds

Business Insider, November 2017; Matz et al., 2017

Dance like no one ‘s watching (but they totally are).

19th of June, Online Research Seminar, Explaining prediction models on Big Data



SOCIAL MEDIA & BROWSING DATA

Facebook/Instagram “likes”, Twitter posts, online reviews/blogposts, search queries,...
But also: “metadata”

Example applications:
- Psychological/behavioral profiling
o . . Neuroticism £Xtraversio
- Product interest & online targeted advertising & Dovaarce o T e o
o, o . . travelled ~Nl h, pe s e w
- Political party preference & orientation
- Behavioral credit scoring
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DATA-DRIVEN DECISION-MAKING

o .. 1 0 o@o
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MOTIVATION

To what extent is the prediction (model) in line with expectations?

TRUST

Accurate

INSIGHT

Wrong IMPROVE

(Martens, 2020)
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EXPLAINING PREDICTION MODELS

EXPLANATIONS help users to understand the relationship between the input
(features) and the model's predicted output (target)

DIMENSIONS
Scope
Flexibility
Faithfulness

Output format

Global Instance-level
Model-specific Model-agnostic
Intrinsic Post-hoc

Rule, importance-ranked list, visualization, linear
model....
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OVERVIEW OF PROJECTS

Deep Learning for Big, Sparse, Behavioral data
De Cnudde et al., Big Data (2019)

Instance-level explanation algorithms on behavioural and textual data:

a counterfactual-oriented comparison
Ramon et al., Forthcoming in Advances in Data Analysis and Classification(2020)

Improving the cost of explainability for high-dimensional, sparse data

using metafeatures-based rule-extraction
Ramon et al., Submitted to Machine Learning (2020)
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OVERVIEW OF PROJECTS

Towards explainable prediction models on
high-dimensional behavioral and textual data

, VN ‘
INSTANCE-
GLOBAL LEVEL
\ J \ J
e p e “\
Theoretical Metafeatures-based Counterfactual
rule-extraction explanation algorithms
research L ) | &P g )

Validation of methods in
(business) applications

. 4 A
Applied Psychological User study about
research profiling/targeting explanation attributes
. J
Churn prediction ( )

( ]
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INSTANCE-LEVEL EXPLANATION ALGORITHMS
ON BEHAVIORAL AND TEXTUAL DATA:
A COUNTERFACTUAL-ORIENTED COMPARISON

Yanou Ramon, David Martens, Foster Provost, Theodoros Evgeniou
Forthcoming in Advances in Data Analysis and Classification (2020)
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LOCATION DATA NYC: tourist or citizen?

evidence “present” = active feature

c 2 @

Qo 'n ) Q

Eo E =

> —

= — o

0> @)
Anna \/1\ 1 1 0 1
Jack Q_) 0 0 1 0
Bill 0 0 1 0 0

= data matrix is very high-dimensional and sparse

19th of June, Online Research Seminar, Explaining prediction models on Big Data



iy o - "
5z & = R0
1 1 1 0 1 f> » y=1 if tourist
i e L . elsey = 0
Bill 0 0 1 0 0
LOCATION DATA NYC “Black Box” model

— Thousands of coefficients
= Nonlinear techniques

(Local) interpretability issues
= Counterfactual explanations
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COUNTERFACTUAL EXPLANATIONS

Instance-level

Causality within the model

Minimal set of features such that the predicted class changes
when “removing” them (setting value to zero)

Very intuitive and comprehensible = contrastive nature
“Why X rather than not-X?"(Miller, 2017)
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COUNTERFACTUAL EXPLANATIONS

EXPLANATIONS help users to understand the relationship between the input
(features) and the model's predicted output (target)

DIMENSIONS
Scope Global Instance-level *
Flexibility Model-specific Model-agnostic*
Faithfulness Intrinsic Post-hoc *
Output format Rule, importance-ranked list, visualization, linear

model,...
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COUNTERFACTUAL EXPLANATIONS

Example: Tourist prediction using NYC location data

Anna visited 120 places last month
Anna was predicted as “tourist”
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COUNTERFACTUAL EXPLANATIONS

Example: Tourist prediction using NYC location data

Anna visited 120 places last month
Anna was predicted as “tourist”

WHY?
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COUNTERFACTUAL EXPLANATIONS

Example: Tourist prediction using NYC location data

g g
Anna visited 120 places last month =& g
Anna was predicted as “tourist” X ‘ 1
1 Ipuméd.l. _ .
IF Anna would not have visited {Time Square, DUMBO},
THEN the predicted class changes from “tourist” to “NY citizen”
27
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DESIDERATA

Model-agnostic algorithm
Find minimum-sized counterfactual explanation E for a
single model prediction of instance x
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& C:ﬁb K/s"

DESIDERATA

Model-agnostic algorithm
Find minimum-sized counterfactual explanation E for a
single model prediction of instance x

, @i More actionable: e.g., “cloak” fewer online
Wl fraces to get a desired outcome (not be
targeted with ads of gay bars)

More comprehensible

(~cognitive limitations)
G-
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FORMAL OBJECTIVE FUNCTION

Original instance x vs

perturbed instance z
x Anna
! Vjgl:z;=ux; Zpr:ﬁn::edJr

[ forms a subset of the set of indices of the “active” features of x
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E* = {Time Square, DUMBO}

Example: NYC location data

=
-1
Eg
33
o5

Time
= Square

1
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FORMAL OBJECTIVE FUNCTION

Original instance x vs perturbed instance z

Find z* (or E*) that is as close as possible to x and has a different
predicted class

A ={z|(z =argmind(z.x)) A (f(z) < t) A (Vz; > 0:2; € {0,2;}) A (V2R =0: 2 = 0)} (2)
cosine distance predicted class change only “active” features”are perturbed
2* = argmin f(z) (3)

zeA
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FORMAL OBJECTIVE FUNCTION
A tourist

' NY citizen

z* = x\{Time Square, DUMBO}
E* = {Time Square, DUMBO}
A original instance

A @ rerturbed instances

Zs
d cosine distance ‘
Z4. ‘
Z3
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WHY COMPLETE SEARCH FAILS

Start with removing one feature and increase number of features
in the subset until the predicted class changes

Scales exponentially with active features m and required number
of features k to be removed

e.g., for an instance with m features, a combination of k features

requires — evaluations
g (m—k)'k!

19th of June, Online Research Seminar, Explaining prediction models on Big Data
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BEST-FIRST SEARCH (SEDC)

Explaining document classifications (Martens & Provost, 2013)
Model-agnostic algorithm SEDC: heuristic best-first search
Optimal for linear models

@ Implementation on https://github.com/yramon/edc
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https://github.com/yramon/edc

BEST-FIRST SEARCH (SEDC)

Check “active”

features

Class change?

Expand best-first
feature (set) with No?
one extra feature

Counterfactual

? .
e explanation found

Class change?
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NOVEL HYBRID ALGORITHMS

Additive Feature Attribution (AFA) methods:
. LIME: Local Model-agnostic Explainer (ribeiro et al., 2016)
. SHAP: Shapley Additive Explanations (Lundberg et al., 2018)

Output: Importance-ranked list
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NOVEL HYBRID ALGORITHMS

LIME / SHAP
Example: Tourist prediction using NYC location data

0.211
0.205
0.202
0.197 Top of the Rock
0.192 MoMA

0.186 Fifth Avenue

-0.185
Eataly

Time Square
DUMBO
Central Park

Washington Square Park
0.183
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NOVEL HYBRID ALGORITHMS

Originality: importance rankings may be an “intelligent”
starting point for efficiently computing counterfactuals

- Novel algorithms: LIME-C and SHAP-C
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NOVEL HYBRID ALGORITHMS

LIME-C / SHAP-C

Example: Tourist prediction using NYC location data

A

0.211

0.205
0.202

A

T Time Square
7 DUMBO
1) Central Park

0.197

| Top of the Rock

0.192

0.186
Washington Square Park

] MoMA

7 Fifth Avenue
-0.185

0.183
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Remove features with
positive importance
weight until the

class changes
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EXPERIMENTAL SETUP




Collect data sets

and build models

G

Textual data:

linear/rbf SVM
Y,

e

~
Behavioral data:
LR/MLP

Table 1: Data characteristics of the data sets: data type (B:behavioral, T:textual), target variable, number of instances and features,
imbalance b of the target, the sparsity p and the test set size (percentage of instances predicted as positive are placed in
brackets). We use 20% of the data as test set. A * indicates that the number of positively predicted test instances used for
the experiments was a random subset of 300. The average number of active features 17t and 1inontin are measured over
the positively predicted test instances of respectively the linear and nonlinear model. The last column shows the reference.
Note that we sort the data sets by increasing values of 14y,

Dataset Type Target Instances Features p  Testset (%) Miin  Myonlin ref
Flickr* B comments 100,000 190,991  36.91% 99.99% 20,000 (20%) 2.02 2,96 | [36]
Ecommerce® B gender 15,000 21,880  21.98% 99.99% 3.000 (15%) 2.60 2.67 [3]
Airline* T sentiment 14,640 5,183 16.14% 99.82% 2,928 (15%) 7.81 8.21 2]
Twitter T topic 6,090 4,569 9.15% 99.74% 1,218 (10%) 9.52 9.35 3]
Fraud* B fraudulent 858,131 107,345 6.4e-5% 99.99%  171.627(1%) § 11.83 14.09 § na.
YahooMovies* B gender 7,642 11,915 28.87% 99.76% 1,529 (20%) | 25.24 25.00 [6]
TaFeng* B age 31,640 23,719 45.23% 99.90% 6,328 (15%) | 44.32 37.24 § [22]
KDD2015* B dropout 120,542 4,835  20.71% 99.67% 24,109 (20%) § 49.01 46.40 [4]
20news T atheism 18,846 41,356 4.24%  99.84% 3,770 (5%) | 67.96 62.77 [1]
Movielens_ 100k B gender 943 1,682 28.95% 93.69% 189 (25%) | 68.73 73.42 [ [20]
Facebook* B gender 386,321 122,924 44.57% 99.94% 77,265 (30%) § 83.03 84.55 [9]
Movielens_Im* B gender 6,040 3,706  28.29% 95.53% 1,208 (25%) J 168.46 153.46 | [20]
Libimseti* B gender 137,806 166,353  44.53% 99.93% 27,562 (30%) || 229.16  226.97 [8]
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Collect data sets Generate

explanations for

and build models :
test instances

(~ N\ ( )
Textual data: ] SEDC )
linear/rbf SVM r )

_ Y, LIME-C

e N <

Behavioral data: SHAP-C
LR/MLP ) g
\ ) Positively-predicted test

instances

max. 2 minutes
max. 30 features

SEDC: max 50 iterations
LIME/SHAP-C: 5000 samples
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EVALUATION CRITERIA

The goal is to find the minimum-sized counterfactual as fast
as possible =» tradeoff between:

Effectiveness

Percentage explained

Switching point: amount of features in explanation
Efficiency

Computation time in seconds

19th of June, Online Research Seminar, Explaining prediction models on Big Data
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Collect data sets

and build models

Generate

explanations for
test instances

Evaluation

4 N ( \ )
Textual data: SEDC Percentage
linear/rbf SVM r N L explained )

- y, LIME-C r w

( N\ ( ) Switching point

Behavioral data: SHAP-C q J
LR/MLP f )

\_ ) Positively-predicted test Computation time

instances L )

max. 2 minutes
max. 30 features

SEDC: max. 50 iterations
LIME/SHAP-C: 5000 samples
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The percentages are underlined if a method is significantly worse than the best method on a 1% significance level using a

McNemar mid-p test [15].

EFFECTIVENESS

Table 2: Percentage explained (fraction of positively predicted instances for which a counterfactual smaller than 30 is found).
For stochastic LIME-C/SHAP-C, these are average percentages over 5 runs. The best percentages are indicated in bold.

Linear Nonlinear
Dataset SEDC (%) LIME-C (%) SHAP-C(%) | SEDC (%) LIME-C (%) SHAP-C (%)
Flickr 100 99.33 99.33 28.67 28.33 24.33
Ecommerce 100 97.33 100 97.67 97.00 99.67
Airline 100 100 100 100 100 100
Twitter 100 100 100 100 100 100
Fraud 100 100 31.67 100 100 75.00
YahooMovies 100 100 100 08.67 100 100
TaFeng 100 100 100 03.33 100 100
KDD2015 100 100 100 99.67 100 97.67
20news 100 08.94 100 100 098.41 100
Movielens_ 100k 100 100 100 100 100 97.92
Facebook 97.00 95.33 92.67 70.33 93.00 87.67
Movielens_lm 99,33 99.00 96.67 90.00 95.33 92.67
Libimseti 96.33 91.00 29.00 75.00 82.33 TO.6T
Average 99.44 98.53 96.87 85.95 01.88 8812
# wins 13 o] bl ¥ 10 T
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The percentages are underlined if a method is significantly worse than the best method on a 1% significance level using a

McNemar mid-p test [15].

EFFECTIVENESS

Table 2: Percentage explained (fraction of positively predicted instances for which a counterfactual smaller than 30 is found).
For stochastic LIME-C/SHAP-C, these are average percentages over 5 runs. The best percentages are indicated in bold.

Linear Nonlinear
Dataset SEDC (%) LIME-C (%) SHAP-C(%) | SEDC (%) LIME-C (%) SHAP-C (%)
Flickr 100 99.33 99.33 28.67 28.33 24.33
Ecommerce 100 97.33 100 97.67 97.00 99.67
Airline 100 100 100 100 100 100
Twitter 100 100 100 100 100 100
Fraud 100 100 31.67 100 100 75.00
YahooMovies 100 100 100 08.67 100 100
TaFeng 100 100 100 03.33 100 100
KDD2015 100 100 100 99.67 100 97.67
20news 100 08.94 100 100 098.41 100
Movielens_ 100k 100 100 100 100 100 97.92
Facebook 97.00 95.33 092.67 70.33 93.00 87.67
Movielens_lm 99,33 99.00 96.67 90.00 95.33 92.67
Libimseti 96.33 91.00 29.00 78.00 82.33 70.67
Average 99.44 98.53 06.87 85.95 01.88 8812
# wins 13 8 8 6 10 7
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The percentages are underlined if a method is significantly worse than the best method on a 1% significance level using a

McNemar mid-p test [15].

EFFECTIVENESS

Table 2: Percentage explained (fraction of positively predicted instances for which a counterfactual smaller than 30 is found).
For stochastic LIME-C/SHAP-C, these are average percentages over 5 runs. The best percentages are indicated in bold.

Linear Nonlinear
Dataset SEDC (%) LIME-C (%) SHAP-C(%) | SEDC (%) LIME-C (%) SHAP-C (%)
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Fraud 100 100 31.67 100 100 75.00
YahooMovies 100 100 100 08.67 100 100
TaFeng 100 100 100 03.33 100 100
KDD2015 100 100 100 99.67 100 97.67
20news 100 08.94 100 100 098.41 100
Movielens_ 100k 100 100 100 100 100 97.92
Facebook 97.00 95.33 92.67 70.33 93.00 87.67
Movielens_lm 99,33 99.00 96.67 90.00 95.33 92.67
Libimseti 96.33 91.00 29.00 75.00 82.33 TO.6T
Average 99.44 98.53 96.87 85.95 01.88 8812
# wins 13 o] bl ¥ 10 T
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EFFECTIVENESS

Table 2: Percentage explained (fraction of positively predicted instances for which a counterfactual smaller than 30 is found).
For stochastic LIME-C/SHAP-C, these are average percentages over 5 runs. The best percentages are indicated in bold.
The percentages are underlined if a method is significantly worse than the best method on a 1% significance level using a
McNemar mid-p test [15].
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EFFECTIVENESS

Table 2: Percentage explained (fraction of positively predicted instances for which a counterfactual smaller than 30 is found).
For stochastic LIME-C/SHAP-C, these are average percentages over 5 runs. The best percentages are indicated in bold.
The percentages are underlined if a method is significantly worse than the best method on a 1% significance level using a
McNemar mid-p test [15].

Linear Nonlinear

Dataset SEDC (%) LIME-C (%) SHAP-C(%) | SEDC (%) LIME-C (%) SHAP-C (%)
Flickr 100 99.33 09.33 28.67 73.33 21.33
Ecommerce 100 97.33 100 97.67 97.00 99.67
Airline 100 100 100 100 100 100
Twitter 100 100 100 100 100 100

| Fraud 100 100 %1.67 100 100 75.00 |
YahooMovies 100 100 100 98.67 100 100
TaFeng 100 100 100 93.33 100 100
KDD2015 100 100 100 99.67 100 97.67
20news 100 98.94 100 100 98.41 100
Movielens_ 100k 100 100 100 100 100 97.92
Facebook 97.00 95.33 92.67 70.33 93.00 87.67
Movielens_1m 99,33 99.00 96.67 90.00 95.33 92.67
Libimseti 96.33 91.00 39.00 78.00 82.33 70.67
Average 99.44 93.53 06.87 23.95 91.88 33.12
# wins 13 8 8 6 10 7
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EFFECTIVENESS

Table 3: Median and interquantile range of switching point. For stochastic LIME-C/SHAP-C, this is the average median/range over
5 runs. The switching point is measured over the subset of instances where all methods have found a switching point. The
best (median) switching points are indicated in bold. The values are underlined if a method is significantly worse than the
best method (smallest median value) on a 1% significance level using a McNemar mid-p test [15].

| Linear | Nonlinear
Dataset | SEDC LIME-C SHAP-C Random | SEDC LIME-C SHAP-C Random
Flickr 1a-1)  1d-1)  1(-1) 11-1) -1 101-1) 1(1-1) 1(1-2)
Ecommerce 11-1)  1a-1)  1(1-1) 1(1-2) 1(1-1) 1(1-1) 1(1-1) 1(1-2)
Airline 1(1-2) 1(1-2) 1(1-2) 2(1 — 3) 1(1-1) 1(1-1) 1(1-1) 2(1 - 3)
Twitter 2(1-3) 2(1-3)  2(1-3) 32— 5) 1(1-1) 1(1-1) 1(1-1) 3(2-5)
Fraud 1(1-1) 1(1-1) 1(1-1) 1(1-1) 1(1-1) 1(1-1) 1(1-1) 1(1-1)
YahooMovies | 2(1-4)  2(1-4)  2(1-4) 42— 7) 1(1-3) 21 — 3) (1 — 3) 42 - 7)
TaFeng 2(1-4) 2(1-4) 2(1-4) § { —11) 2(1-8) 2(1-3) 2(1-3.05) 6(3 — 11)
KDD2015 3(1-7) 3(1-7)  3(1-7) 8.5(3—17.25) 2(1-3) 2(1-3.25) 2(1-4) 4(3—17.25)
20news 2(1-4) 2(1-4)  2(1-4) 11(4 —23.5) 1(1-3) 1(1-3) 11-3) 8@ —23.5)
Movielens_100k 2(1-4) 2(1-4) 2(1-4) 5.5(3 — 10) 2(1-4) 2(1-4) 2(1-4) h(3 — 10)
Facebook 327 327 32D SA—18) | 4(1-13)  2.8(1-42)  3(1.2-5.15) 9Z-13)
Movielens Im | 3(2-7) 32-7) 327 852 —18) 3(1-6) 3(1-6) 3(1-6) 7A-13)
Libimseti 3(2-5.5) 3(2-5.7) 3(2-5.9) 28(13 — 48) 2(1-5) 4.2(2 - 8.8) 5.2(24—11.5) 19(13 — 48)
# wins | 13 13 13 3 | 12 11 10 3
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EFFECTIVENESS

Table 3: Median and interquantile range of switching point. For stochastic LIME-C/SHAP-C, this is the average median/range over
5 runs. The switching point is measured over the subset of instances where all methods have found a switching point. The
best (median) switching points are indicated in bold. The values are underlined if a method is significantly worse than the
best method (smallest median value) on a 1% significance level using a McNemar mid-p test [15].

Linear | Nonlinear
Dataset SEDC LIME-C SHAP-C Random | SEDC LIME-C SHAP-C Random
Flickr 1a-1)  1d-1)  1(-1) 11-1) -1 101-1) 1(1-1) 1(1-2)
Ecommerce 11-1)  1a-1)  1(1-1) 1(1-2) 1(1-1) 1(1-1) 1(1-1) 1(1-2)
Airline 1(1-2) 1(1-2) 1(1-2) 2(1 — 3) 1(1-1) 1(1-1) 1(1-1) 2(1 - 3)
Twitter 2(1-3) 2(1-3)  2(1-3) 32— 5) 1(1-1) 1(1-1) 1(1-1) 3(2-5)
Fraud 1(1-1) 1(1-1) 1(1-1) 1(1-1) 1(1-1) 1(1-1) 1(1-1) 1(1-1)
YahooMovies | 2(1-4)  2(1-4)  2(1-4) 42— 7) 1(1-3) 21 — 3) (1 — 3) 42 - 7)
TaFeng 2(1-4) 2(1-4) 2(1-4) § { —11) 2(1-8) 2(1-3) 2(1-3.05) 6(3 — 11)
KDD2015 3(1-7) 3(1-7)  3(1-7) 8.5(3—17.25) 2(1-3) 2(1-3.25) 2(1-4) 4(3—17.25)
20news 2(1-4) 2(1-4)  2(1-4) 11(4 —23.5) 1(1-3) 1(1-3) 11-3) 8@ —23.5)
Movielens_100k 2(1-4) 2(1-4) 2(1-4) 5.5(3 — 10) 2(1-4) 2(1-4) 2(1-4) h(3 — 10)
Facebook 327 327 32D SA—18) ||4(1-13)  2.8142)  3(1.2-5.15) 9Z-13)
Movielens Im | 3(2-7) 32-7) 327 852 —18) 3(1-6) 3(1-6) 3(1-6) 7A-13)
Libimseti 3(2-5.5) 3(2-5.7) 3(2-5.9) 28(13 — 48) 2(1-5) 4.2(2 - 8.8) 5.2(24—11.5) 19(13 — 48)
# wins 13 13 13 3 | 12 11 10 3
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EFFECTIVENESS

Table 3: Median and interquantile range of switching point. For stochastic LIME-C/SHAP-C, this is the average median/range over
5 runs. The switching point is measured over the subset of instances where all methods have found a switching point. The
best (median) switching points are indicated in bold. The values are underlined if a method is significantly worse than the
best method (smallest median value) on a 1% significance level using a McNemar mid-p test [15].

| Linear Nonlinear
Dataset | SEDC LIME-C SHAP-C Random SEDC LIME-C SHAP-C Random
Flickr 1a-1)  1d-1)  1(-1) 11-1) -1 101-1) 1(1-1) 1(1-2)
Ecommerce 11-1)  1a-1)  1(1-1) 1(1-2) 1(1-1) 1(1-1) 1(1-1) 1(1-2)
Airline 1(1-2) 1(1-2) 1(1-2) 2(1 — 3) 1(1-1) 1(1-1) 1(1-1) 2(1 - 3)
Twitter 2(1-3) 2(1-3)  2(1-3) 32— 5) 1(1-1) 1(1-1) 1(1-1) 3(2-5)
Fraud 1(1-1) 1(1-1) 1(1-1) 1(1-1) 1(1-1) 1(1-1) 1(1-1) 1(1-1)
YahooMovies | 2(1-4)  2(1-4)  2(1-4) 42— 7) 1(1-3) 21 — 3) (1 — 3) 42 - 7)
TaFeng 2(1-4) 2(1-4) 2(1-4) § { —11) 2(1-8) 2(1-3) 2(1-3.05) 6(3 — 11)
KDD2015 3(1-7) 3(1-7)  3(1-7) 8.5(3—17.25) 2(1-3) 2(1-3.25) 2(1-4) 4(3=17.25)
20news 2(1-4) 2(1-4)  2(1-4) 11(4 —23.5) 1(1-3) 1(1-3) 11-3) | 8@ —235)
Movielens_100k 2(1-4) 2(1-4) 2(1-4) 5.5(3 — 10) 2(1-4) 2(1-4) 2(1-4) h(3 — 10)
Facebook 327 327 32D SA—18) | 4(1-13)  2.8(1-42)  3(1.2-5.15) 9Z-13)
Movielens Im | 3(2-7) 32-7) 327 852 —18) 3(1-6) 3(1-6) 3(1-6) 7A-13)
Libimseti 3(2-5.5) 3(2-5.7) 3(2-5.9) 28(13 — 48) 2(1-5) 4.2(2 - 8.8) 5.2(24—11.5) 19(13 — 48)
# wins | 13 13 13 3 12 11 10 3
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EFFICIENCY

Table 4: Median and interquantile range of computation time in seconds. For stochastic LIME-C/SHAP-C, this is the average
median/range over 5 runs. The computation time is measured over the subset of instances where all methods have found
an explanation. The best (median) computation times are indicated in bold. The values are underlined if a method is
significantly worse than the best method (smallest median value) on a 1% significance level using a McNemar mid-p

test | 15].

Linear Nonlinear

Dataset SEDC LIME-C SHAP-C SEDC LIME-C SHAP-C
Flickr 0.00(0.00-0.00) 0.37(0.36 — 0.38) 07(0.07 — 0.08) | 0.00(0.00-0.00) 0.39(0.39 — 0.42) 0.09(0.08 — 0.17)
Ecommerce 0.0000.00-0.00) 0.82(0.77 — 0.86) 0.06(0.05-0.07) 0.00(0.00-0.00)  0.43(0.42 — 0.45)  0.04(0.03 — 0.04)
Airline 0.0000.00-0.02) 0.97(0.84 — 1.09)  0.09(0.04 — 0.62) | 0.02(0.00-0.02) 1.36(1.18 —1.52) 0.13(0.04 — 0.84)
Twitter 0.01(0.01-0.01) 0.66(0.61 — 0.69) 0.22(0.07 — 0.49) | 0.01(0.00-0.01) 0.69(0.65 —0.71) 0.17(0.06 — 0.47)
Fraud 0.0000.00-0.00) 0.44(0.41 — 0.46)  0.07(0.06 — 0.09) | 0.00(0.00-0.02) 0.43(0.41 — 0.45) 0.08(0.07 — 0.15)
YahooMovies 0.01(0.01-0.02)  0.45(0.43 — 0.49)  0.94(0.87 — 0.99) | 0.05(0.03-0.12) 1.88(1.82 — 1.96) 3.39(3.24 — 3.47)
TaFeng 0.02(0.01-0.05)  0.49(0.44 — 0.58) 1.03(0.98 — 1.08) | 0.02(0.00-0.06) 0.49(0.45 — 0.58) 0.99(0.95 — 1.0G)
KDD2015 0.03(0.02-0.11)  0.51(0.46 — 0.61)  1.03(0.97 — 1.07) | 0.06(0.03-0.16) 0.81(0.75 —0.91)  1.3(1.24 — 1.37)
20news 0.13(0.03-0.44)  3.34(2.11 — 4.35)  3.55(2.68 — 4.33) | 0.07(0.02-0.26) 2.31(1.58 — 3.23) 2.61(2.09 — 3.22)
Movielens_100k | 0.02(0.02-0.07) 0.51(0.47 —0.74) 1.01(0.96 — 1.14) | 0.03(0.02-0.12) 0.61(0.53 —0.89) 1.10(1.03 — 1.31)
Facebook 0.03(0.01-0.14)  0.58(0.48 — 0.81) 1.09(1.03 — 1.19) | 0.04(0.01-0.19) 0.54(0.48 — 0.63) 1.08(1.03 — 1.14)
Movielens_1m 0.09(0.03-0.44) 0.76(0.53 — 1.20) 15(1.01 — 1.47) | 0.13(0.03-0.48) 0.79(0.61 — 1.14) 1.25(1.12 — 1.48)
Libimseti 0.13(0.06-0.38) 1.06(0.94 —1.38) 1.38(1.3 — 1.55) [ 0.16(0.08-0.39) 1.04{0.93 —1.29) 1.44(1.38 —1.57)
# wins 13 0 0 13 0 0
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EFFICIENCY

Table 4: Median and interquantile range of computation time in seconds. For stochastic LIME-C/SHAP-C, this is the average
median/range over 5 runs. The computation time is measured over the subset of instances where all methods have found
an explanation. The best (median) computation times are indicated in bold. The values are underlined if a method is
significantly worse than the best method (smallest median value) on a 1% significance level using a McNemar mid-p

test | 15].

Linear Nonlinear

Dataset SEDC LIME-C SHAP-C SEDC LIME-C SHAP-C
Flickr 0.00(0.00-0.00) | 0.37(0.36 — 0.38) 07(0.07 — 0.08) | 0.00(0.00-0.00) | 0.39(0.39 — 0.42) 0.09(0.08 — 0.17)
Ecommerce 0.0000.00-0.00) | 0.82(0.77 — 0.86) 0.06(0.05-0.07) 0.00(0.00-0.00) | 0.43(0.42 — 0.45)  0.04(0.03 — 0.04)
Airline 0.0000.00-0.02) | 0.97(0.84 — 1.09)  0.09(0.04 — 0.62) | 0.02(0.00-0.02) | 1.36(1.18 — 1.52)  0.13(0.04 — 0.84)
Twitter 0.01(0.01-0.01) | 0.66(0.61 —0.69) 0.22(0.07 — 0.49) | 0.01(0.00-0.01) | 0.69(0.65 — 0.71)  0.17(0.06 — 0.47)
Fraud 0.00(0.00-0.00) | 0.44(0.41 — 0.46)  0.07(0.06 — 0.09) § 0.00(0.00-0.02) | 0.43(0.41 — 0.45)  0.08(0.07 — 0.15)
YahooMovies 0.01(0.01-0.02) | 0.45(0.43 — 0.49)  0.94(0.87 — 0.99) | 0.05(0.03-0.12) | 1.88(1.82 — 1.96) 3.39(3.24 — 3.47)
TaFeng 0.02(0.01-0.05) | 0.49(0.44 — 0.58) 1.03(0.98 — 1.08) || 0.02(0.00-0.06) | 0.49(0.45 — 0.58)  0.99(0.95 — 1.0G)
KDD2015 0.03(0.02-0.11) | 0.51(0.46 — 0.61)  1.03(0.97 — 1.07) | 0.06(0.03-0.16) | 0.81(0.75 — 0.91)  1.3(1.24 — 1.37)
20news 0.13(0.03-0.44) | 3.34(2.11 — 4.35)  3.55(2.68 — 4.33) || 0.07(0.02-0.26) | 2.31(1.58 — 3.23)  2.61(2.09 — 3.22)
Movielens_100k | 0.02(0.02-0.07) | 0.51(0.47 — 0.74) 1.01(0.96 — 1.14) | 0.03(0.02-0.12) | 0.61(0.53 — 0.89) 1.10(1.03 — 1.31)
Facebook 0.03(0.01-0.14) | 0.58(0.48 — 0.81) 1.09(1.03 — 1.19) | 0.04(0.01-0.19) | 0.54(0.48 — 0.63) 1.08(1.03 — 1.14)
Movielens_1m 0.09(0.03-0.44) | 0.76(0.53 — 1.20) 15(1.01 — 1.47) { 0.13(0.03-0.48) | 0.79(0.61 — 1.14) 1.25(1.12 — 1.48)
Libimseti 0.13(0.06-0.38) | 1.06(0.94 — 1.38) 1.38(1.3 — 1.55) [ 0.16(0.08-0.39) | 1.04{0.93 — 1.29) 1.44{1.38 — 1.57)
# wins 13 0 0 13 0 0
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EFFICIENCY vs SWITCHING POINT
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EFFICIENCY

Table 4: Median and interquantile range of computation time in seconds. For stochastic LIME-C/SHAP-C, this is the average
median/range over 5 runs. The computation time is measured over the subset of instances where all methods have found
an explanation. The best (median) computation times are indicated in bold. The values are underlined if a method is
significantly worse than the best method (smallest median value) on a 1% significance level using a McNemar mid-p

test | 15].

Linear Nonlinear

Dataset SEDC LIME-C SHAP-C SEDC LIME-C SHAP-C
Flickr 0.00(0.00-0.00) 0.37(0.36 — 0.38) 0.07(0.07 — 0.08) [ 0.00(0.00-0.00) 0.39{0.39 — 0.42) 0.09(0.08 — 0.17)
Ecommerce 0.0000.00-0.00) 0.82(0.77 — 0.86) 0.06(0.05-0.07) 0.00(0.00-0.00)  0.43(0.42 — 0.45)  0.04(0.03 — 0.04)
Airline 0.0000.00-0.02) 0.97(0.84 — 1.09)  0.09(0.04 — 0.62) | 0.02(0.00-0.02) 1.36(1.18 —1.52) 0.13(0.04 — 0.84)
Twitter 0.01(0.01-0.01) 0.66(0.61 — 0.69) 0.22(0.07 — 0.49) | 0.01(0.00-0.01) 0.69(0.65 —0.71) 0.17(0.06 — 0.47)
Fraud 0.0000.00-0.00)  0.44(0.41 — 0.46)  0.07(0.06 — 0.09) | 0.00(0.00-0.02) 0.43{0.41 — 0.45)  0.08(0.07 — 0.15)
YahooMovies 0.01(0.01-0.02)  0.45(0.43 — 0.49)  0.94(0.87 — 0.99) | 0.05(0.03-0.12) 1.88(1.82 — 1.96) 3.39(3.24 — 3.47)
TaFeng 0.02(0.01-0.05)  0.49(0.44 — 0.58) 1.03(0.98 — 1.08) | 0.02(0.00-0.06) 0.49(0.45 — 0.58) 0.99(0.95 — 1.0G)
KDD2015 0.03(0.02-0.11)  0.51(0.46 — 0.61)  1.03(0.97 — 1.07) | 0.06(0.03-0.16) 0.81(0.75 —0.91)  1.3(1.24 — 1.37)
20news 0.13(0.03-0.44)  3.34(2.11 — 4.35)  3.55(2.68 — 4.33) | 0.07(0.02-0.26) 2.31(1.58 — 3.23) 2.61(2.09 — 3.22)
Movielens_100k | 0.02(0.02-0.07) 0.51(0.47 —0.74) 1.01(0.96 — 1.14) | 0.03(0.02-0.12) 0.61(0.53 —0.89) 1.10(1.03 — 1.31)
Facebook 0.03(0.01-0.14)  0.58(0.48 — 0.81) 1.09(1.03 — 1.19) | 0.04(0.01-0.19) 0.54(0.48 — 0.63) 1.08(1.03 — 1.14)
Movielens_1m 0.09(0.03-0.44) 0.76(0.53 — 1.20) 1.15(1.01 — 1.47) | 0.13(0.03-0.48) 0.79{(0.61 — 1.14) 1.25(1.12 — 1.48)
Libimseti 0.13(0.06-0.38) 1.06(0.94 —1.38) 1.38(1.3 — 1.55) [ 0.16(0.08-0.39) 1.04{0.93 —1.29) 1.44(1.38 —1.57)
# wins 13 0 0 13 0 0
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CONCLUSION

- SEDC most efficient and effective for small data instances, however
- flaw in heuristic best-first for some nonlinear models

- SHAP-C overall good performance, however
- problems with highly unbalanced data
- computation time more sensitive to # active features than LIME-C
- relatively worse effectiveness/efficiency

— LIME-C: suitable alternative to SEDC because of good tradeoff
- good effectiveness results for all data and models
- low computation times
- efficiency least sensitive to switching point
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CONCLUSION

- SEDC most efficient and effective for small data instances, however
- flaw in heuristic best-first for some nonlinear models

- SHAP-C overall good performance, however
- problems with highly unbalanced data
- computation time more sensitive to # active features than LIME-C
- relatively worse effectiveness/efficiency

— LIME-C: suitable alternative to SEDC because of good tradeoff
- good effectiveness results for all data and models
- low computation times
- efficiency least sensitive to switching point
I'Also addresses problem of setting complexity of LIME/SHAP explanation
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PROJECT 2



IMPROVING THE COST OF EXPLAINABILITY FOR
HIGH-DIMENSIONAL, SPARSE DATA USING
METAFEATURES-BASED RULE-EXTRACTION

Yanou Ramon, David Martens, Theodoros Evgeniou, Stiene Praet
Submitted in Machine Learning (Special Issue on Feature Engineering)
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PROBLEM

STATEMENT




ez o - "
52 "4 = &R
o e o 1 f> » 9 = 1if tourist
Jack 1 0 0 1 0 - e,sej; = O
Bill 0 0 1 0 0
LOCATION DATA NYC “Black Box” model

— Thousands of coefficients
= Nonlinear techniques

(Global) comprehensibility issues
= Rule-extraction
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RULE-EXTRACTION

Train a comprehensible model (“white-box”) to mimic the
predictions of a more complex, highly accurate “black-box” model
Black-box model: all models on high-dimensional, sparse data

Small decision trees and concise rule sets as “white-boxes”

Black-box model predictions y®2 are used as new labels instead of
the true labels y

19th of June, Online Research Seminar, Explaining prediction models on Big Data
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RULE-EXTRACTION

“Eataly”=1

Columbia
B University

True

“Chelsea
Market’=1

False

Chelsea
o M El G
¥  Tourist

—
o
o
-_—
S

Jack

Bill 0 0 1 0 0
LOCATION DATA NYC

Explains global classification behaviour
over entire instance/feature space
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CHALLENGES FOR HIGH-
DIMENSIONAL, SPARSE DATA

Existing research focuses on low-dimensional, dense data

Challenges

1. Complexity of extracted rules

2. Computational complexity

3. Fine-grained feature comprehensibility
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CHALLENGES FOR HIGH-
DIMENSIONAL, SPARSE DATA

Existing research focuses on low-dimensional, dense data

Challenges

1. Complexity of extracted rules

2. Computational complexity

3. Fine-grained feature comprehensibility

=» |t is questionable whether the original fine-grained (FG) features are
the best representation to achieve high explanation quality. This
motivates our approach to use “metafeatures”.
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METAFEATURES

Address sparsity of fine-grained features by mapping FG data onto a
higher-level MF representation: h(x): Xp; = Xyr € R¥

Desired properties

1.

2
3
4,
5

Low dimensionality

High density

Faithfulness

Mutual exclusivity

Semantic comprehensibility
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GENERATING METAFEATURES

Big Behavioral & Text Data

Metafeatures

Social media data

(e.g., Facebook “Likes”)

Transaction data

Location data

Textual data
Movie viewing data

Web browsing data

19th of June, Online Research Seminar, Explaining prediction models on Big Data

—

Categories of Facebook “Likes”
(e.g., Humor, Music, Art)

Spending categories
(e.g., Gambling, Gift Shops)

Regions/venue types (e.g., Concert
halls, Sports venues)

Topics
Movie genres

Words on a page/categories of URLSs

J Domain-based metafeatures vs

data-driven metafeatures
70



MAIN CLAIM

“Metafeatures” are more appropriate (1 fidelity, 1 stability) for extracting
comprehensible rules from classifiers that are trained on
high-dimensional, sparse data than the original fine-grained features
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Rule-extraction
with fine-grained

RULE-EXTRACTION  rfeatures

“Eataly”=1

2& g% 3
ES 8 ¥ S
=
3 52: 2 £ 3 False True
Anna . “Chelsea
L L 0 ! NY citizen i
Jack 1 0 0 1 0
Bill 0 0 1 0 0
Italian restaurants

>=1

LOCATION DATA NYC

Rule-extraction
with metafeatures

(‘venue types’)
False
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PROPOSED

METHODOLOGY




Build
classification
model Cgp from
labeled
training data

{X FG,train, Ytrain}

PROPOSED METHODOLOGY

Predict labels

BB
= e el Generate
data
: metafeatures
Instances X
(train, test, ME
validation)
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Extract
cognitively
simple rules
using Xyr
and yBB

Evaluate the
quality of
explanation
rules (fidelity,
stability,
accuracy)
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GENERATING METAFEATURES

Domain-based Xpymainmr
Data-driven approach Xppur
—> approach based on Non-negative Matrix Factorization

parameter of Xppur is k (number of generated metafeatures)
k € [10,1000]
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COGNITIVELY SIMPLE
RULE-EXTRACTION

CART decision tree algorithm (Scikit-learn library in Python)
Based on Gini impurity

Max. tree depth of 5(~32 rules) in line with cognitive simplicity
arguments and cognitive load theory

19th of June, Online Research Seminar, Explaining prediction models on Big Data
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EVALUATION CRITERIA

Fidelity: how well does the explanation model Cy, 5 (extracted rules)
approximate the underlying model Cgp?
(“cost of explainability”: 100% - fidelity is the loss in fidelity when
replacing the black-box with an explanation model)
Explanation stability: how stable is the explanation model over
different training sessions with (slightly) different training sets?
Accuracy: how well does the explanation model predict true labels y?
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EXPERIMENTAL SETUP




DATA

Table 1 Characteristics of the data sets: data type (Type: behavioral/textual), classification
task (Target), number of instances (Instances), number of features (Features), number of domain-
based metafeatures (DomainMF), balance of the target b (fraction of instances with a “positive”
class label), and sparsity of the data p (fraction of zero feature values in the data matrix).

Dataset Type Target Instances Features DomainMF b P
Facebook B gender 6,733 5,357 50 32.42%  98.19%
Movielenslm B gender 6,040 3.883 18 28.20%  95.76%
Yahoomovies B gender 7,642 11,915 n.a. T71.13%  99.76%
Movielens100 B gender 943 1,682 1.a. 71.05%  93.69%
Tafeng B gender 31,640 23,719 n.a. 45.23%  99.90%
Libimset1 B gender 137,806 166,353 1.a. 44.53%  99.93%
20news T topic 18,846 41,356 n.a. 4.24%  99.87%
Airline T sentiment 14,640 5,183 n.a. 16.14%  99.82%
Flickr B comments 100,000 190,991 n.a. 36.91%  99.99%
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PREDICTION MODELS

Table 2 Performance of black-box classification models: accuracy, f-score, precision and recall.
The last column shows the optimal hyperparameter value (regularization parameter C for L2-

LR).

Dataset accuracy f-score precision recall HPopt

Facebook 85.97% 78.35% 79.91% 76.85% 0.01
Movielenslm 78.06% 61.31% 60.69% 61.95% 0.01
Yahoomovies 76.78% 83.51% 82.70% 84.33% 0.1

Tafeng 67.69% 64.98% 67.59% 62.55% 0.1
Libimseti 93.05% 92.53% 99.97% 86.11% 0.001
Movwvielens100 73.55% 81.48% 82.711% 80.29% 0.1
20news 96.66% 61.11% 60.74% 61.49% 100
Airline 89.58% 66.96% 64.51% 69.59% 1
Flickr 81.22% 75.36% 79.61% 71.54% 10
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FIDELITY

0.5 Difference in fidelity for all data sets
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FIDELITY

Difference in fidelity for all data sets

Gini impurity reduction
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Difference in stability between DDMF and FG

STABILITY - ACCURACY
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CONCLUSION

Metafeatures-based rule-extraction leads to better tradeoffs:
- Improved “cost of explainability”: small trees/rules that explain
a large(r) percentage of black-box predictions
+b% fidelity, +15% stability, +5% accuracy

Important tradeoff: increasing the complexity leads to increased
fidelity but decreased stability

Finetune k (or any other parameter of explanation model Cy,5) to get
desired fidelity/stability tradeoff
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KEY TAKEAWAYS



OVERVIEW OF PROJECTS

Deep Learning for Big, Sparse, Behavioral data
De Cnudde et al., Big Data (2019)

Instance-level explanation algorithms on behavioural and textual data:

a counterfactual-oriented comparison
Ramon et al., Forthcoming in Advances in Data Analysis and Classification(2020)

Improving the cost of explainability for high-dimensional, sparse data

using metafeatures-based rule-extraction
Ramon et al., Submitted to Machine Learning (2020)
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OVERVIEW OF PROJECTS

I Deep Learning for Big, Sparse, Behavioral data
De Cnudde et al., Big Data (2019)

. Instance-level explanation algorithms on behavioural and textual data:

a counterfactual-oriented comparison
Ramon et al., Forthcoming in Advances in Data Analysis and Classification (2020)

- SEDC is most effective/efficient for data with small instances
- LIME-C algorithm is a good alternative to SEDC algorithm for large data instances

m.  Improving the cost of explainability for high-dimensional, sparse data

using metafeatures-based rule-extraction
Ramon et al., Submitted to Machine Learning (2020)
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OVERVIEW OF PROJECTS

! Deep Learning for Big, Sparse, Behavioral data
De Cnudde et al., Big Data (2019)

. Instance-level explanation algorithms on behavioural and textual data:

a counterfactual-oriented comparison
Ramon et al., Forthcoming in Advances in Data Analysis and Classification (2020)

m.  Improving the cost of explainability for high-dimensional, sparse data

using metafeatures-based rule-extraction
Ramon et al., Submitted to Machine Learning (2020)

—> Metafeatures-based rule-extraction improves a key “cost of explainability”:
higher fidelity compared to rules using fine-grained features
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Further questions?

Mail: yanou.ramon@uantwerp.be
www.linkedin.com/in/yanou-ramon

https://yramon.qgithub.io/
www.applieddatamining.com

THANKS!
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http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr
http://www.linkedin.com/in/yanou-ramon
https://yramon.github.io/
http://www.applieddatamining.com/

