Explainable AI to Gain Insight into Big Five Personality Predictions from Financial Transaction Records

Yanou Ramon, Robert A. Farrokhnia, Sandra C. Matz, David Martens

INTRODUCTION

- Psychological profiling from digital footprints data
- Models built from sparse, highdimensional data with many relevant features are "black box"
- Explainable AI is important to understand, validate and improve models for psychological profiling

METHODS: CASE STUDY

• Data:

N=6,408 users of mobile app Big Five personality survey data *578* pre-processed spending features

- **Predictability of Personality:** Decent accuracies to predict Big Five personality (*min*=53.4%, *max*=61.8%) (Suppl. Material 1)
- *Explainable Al Techniques:* Global: rule-extraction & feature importance ranking
- Local: counterfactual explanation rules

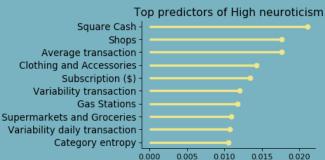
"Local explanations reveal granular insights into why classifications are made. Our experiments show that individuals are classified as exhibiting a personality trait for reasons that reflect their unique financial spending behavior."

Example 1 of local explanation:

IF Person A spent less frequently in {Computer & Electronics}, {Insurance} and {Shops}, and more frequently in {Clothing} and {Restaurants} → THEN not predicted "High Neurotic"

Example 2 of local explanation:

IF Person B spent less frequently in {Tobacco} and {Shops}, and spent less money on {Subscription} and {Tobacco} → THEN not predicted "High Neurotic"



0.000 0.005 0.010 0.015 0.020 Feature importance weight Fig.1: Global feature importance for "Neuroticism" model.

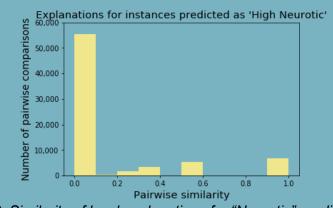


Fig.2: Similarity of local explanations for "Neurotic" predictions. A similarity of 1 indicates that two explanations are the same.

RESULTS

- Local explanations for predictions are unique & concise (Suppl. Material 2A)
- Global explanation rules for predictions reflect overall classification behavior (*Suppl. Material 2B*)

DISCUSSION

- Local Explanations Useful When Modeling Digital Footprints Data:
 Insights into how data is used
 Validation of individual predictions
- Implications of Explainable AI: For Academia:

Validation and improved insights Robustness and replicability *For Industry:*

Improved human-machine interaction Transparency to data subjects (e.g., "Why am I seeing this ad?")

FUNDING & CREDITS

Funding by Research Foundation Flanders. Thanks to SaverLife for providing us with the data.

Local explanations differ from

global explanations (see Fig. 1).

For example, 'Tobacco' is ranked

73rd out 578 features (not shown

feature in example explanation 2.

Fig.2 shows that people receive

predictions made about them.

91.1% of the explanations are

In the "Neuroticism" model,

different explanations for

unique.

in *Fig.1*), but it is an important

