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Active feature = “evidence”
MOVIE VIEWING DATA (MovieLens)
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Sparsity p = 95,53%
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Black box model
ÞThousands of coefficients
ÞNonlinear techniques

? !" = 1 if male
else !" = 0

Movie Viewing Data (MovieLens)
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Comprehensibility issues

29th of October 2019, Invited Talk Lenddo, New York City



Black box model
ÞThousands of coefficients
ÞNonlinear techniques

? !" = 1 if male
else !" = 0

Movie Viewing Data (MovieLens)

8

INSTANCE-LEVEL EXPLANATIONS: 
Why relevant?
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WHY EXPLANATIONS?

● Improving the model: data leakage, overfitting, misclassifications
● Trust and acceptance
● Detect bias / discrimination
● Formal objectives vs ethical objectives
● Compliance (e.g., right to explanations)
● …
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WHY EXPLANATIONS?
● Improving the model: explain misclassifications
Example: objectionable web content detection (Martens & Provost, 2013) 

Web pages Black box model

!" = 1 if objectionable
else !" = 0
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WHY EXPLANATIONS?
● Improving the model: explain misclassifications 
Example: objectionable web content detection (Martens & Provost, 2013) 

Black box model

!" = 0

Web page

11

"Why was this page NOT
classified as objectionable?"
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WHY EXPLANATIONS?
● Improving the model: explain misclassifications 
Example: objectionable web content detection (Martens & Provost, 2013) 

Misclassified web page:
predicted as non-objectionable

IF the word "bikini" was not on the
page, THEN the predicted class
would change from non-objectionable
to objectionable

Why?
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WHY EXPLANATIONS?
● Trust and acceptance 
Example: explainable legal document classification (Chhatwal et al., 2019) 

Legal documents Black box model

!" = 1 if responsive
else !" = 0
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WHY EXPLANATIONS?
● Trust and acceptance 
Example: explainable legal document classification (Chhatwal et al., 2019) 

Legal document Black box model

!" = 1

"Why is
this document
classified
as responsive?"
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WHY EXPLANATIONS?
● Generate insights
Example: Know your customer (e.g., Hall, 2012; Grossnickle, 2001)

Visited URLs Black box model

!" = 1 if interested in product
else !" = 0
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WHY EXPLANATIONS?
● Generate insights
Example: Know your customer (e.g., Hall, 2012; Grossnickle, 2001)

Visited URLs Black box model “Who are we targeting?
Why are we targeting them?”
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COUNTERFACTUAL EXPLANATIONS
● Instance-level explanation of particular prediction
● Insight into how model works (causality within model)
● Rule: a minimal set of features such that the predicted class 

changes when “removing” them (~setting value to zero)
● Comprehensible and concise
● Argued to be the most intuitive and valuable for humans because 

they are contrastive (“Why X rather than not-X?”; Miller, 2017)
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COUNTERFACTUAL EXPLANATIONS
Example: gender prediction using movie viewing data

Sam watched 120 movies
Sam was predicted as ‘male’
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COUNTERFACTUAL EXPLANATIONS
Example: gender prediction using movie viewing data

Sam watched 120 movies
Sam was predicted as ‘male’

18

Why?
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COUNTERFACTUAL EXPLANATIONS
Example: gender prediction using movie viewing data

Sam watched 120 movies
Sam was predicted as ‘male’

IF Sam would not have watched {Taxi Driver, The Dark Knight, Die 
Hard, Terminator 2, Now You See Me, Interstellar},
THEN the predicted class changes from ‘male’ to ‘female’
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WHY COMPLETE SEARCH FAILS

● Start with removing one feature and increase number of features 
in the subset until the predicted class changes

● Scales exponentially with active features m and required number 
of features k to be removed
e.g., for an instance with m features, a combination of k features 
requires !!

!#$ !$! evaluations
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WHY COMPLETE SEARCH FAILS
Figure 1: Number of combinations (a) and time elapsed (b) per iteration

for an instance with 34 active features and a counterfactual of 6 features (MovieLens data)

2129th of October 2019, Invited Talk Lenddo, New York City



COUNTERFACTUAL 
ALGORITHMS



ALGORITHMIC ASSUMPTIONS

● Goal: find counterfactual explanation as fast and as 
concise as possible (efficiency-effectiveness tradeoff)

● Model-agnostic
● Max. 30 features in explanation
● Max. 5 minutes to compute explanation
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BEST-FIRST SEARCH (SEDC)

● Explaining document classifications (Martens & Provost, 2013)

● Model-agnostic algorithm SEDC: heuristic best-first search
(lin-SEDC: linear implementation)

● Optimal for linear models 

Implementation on https://github.com/yramon/edc
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BEST-FIRST SEARCH (SEDC)

Check active 
features

Expand best-first 
feature (set) with 
one extra feature

Counterfactual 
explanation found

Class change?

Class change?

No?

No? Yes?

Yes?
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NOVEL HYBRID ALGORITHMS

Additive Feature Attribution methods:
● LIME: Local Model-agnostic Explainer (Ribeiro et al., 2016)

● SHAP: Shapley Additive Explanations (Lundberg et al., 2018)

Output: importance-ranked list
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NOVEL HYBRID ALGORITHMS
LIME / SHAP
• Sparse, linear explanation model
• Approximates original model in neighbourhood of instance 
• Perturbed instances 

Ribeiro et al., 2016
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NOVEL HYBRID ALGORITHMS
LIME / SHAP 
Example: gender prediction using movie viewing data

…

0.211 Die Hard

0.205 Mission Impossible
0.202 Saving Private Ryan

0.197 Now you see me

0.192 Taxi Driver
0.186 Tarzan

0.183 Terminator 2
Stop Making Sense         - 0.185
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Originality: importance rankings may be “intelligent” 
starting point for efficiently searching counterfactuals

Þ Novel algorithms: LIME–C and SHAP-C 

NOVEL HYBRID ALGORITHMS
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NOVEL HYBRID ALGORITHMS
LIME-C / SHAP-C
Example: gender prediction using movie viewing data

…

Remove features with 
positive importance
weight until the 
class changes

…

0.211 Die Hard

0.205 Mission Impossible
0.202 Saving Private Ryan

0.197 Now you see me

0.192 Taxi Driver
0.186 Tarzan

0.183 Terminator 2
Stop Making Sense         - 0.185
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CONTRIBUTIONS

● Two novel model-agnostic algorithms (LIME-C / SHAP-C)
● Define quantitative evaluation criteria
● Evaluate performance against existing SEDC algorithm 

and make practical recommendations 
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EXPERIMENTAL SETUP



Collect data sets 
and build models

Textual data: 
linear/rbf SVM

Behavioral data: 
LR/MLP

Table 1: Data sets and characteristics
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Collect data sets 

and build models

Textual data: 

linear/rbf SVM

Behavioral data: 

LR/MLP

Generate 

explanations for 

test instances

SEDC

LIME-C

SHAP-C

Positively-predicted test 

instances

max. 5 minutes

max. 30 features

Evaluation

35

SEDC: max 50 iterations

LIME/SHAP-C: 5000 samples
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EVALUATION CRITERIA

The goal is to find a small-sized counterfactual as fast as 
possible è tradeoff between

• Effectiveness
Percentage explained
Switching point: # features in explanation

• Efficiency
Computation time in seconds
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Collect data sets 

and build models

Textual data: 

linear/rbf SVM

Behavioral data: 

LR/MLP

Generate 

explanations for 

test instances

SEDC

LIME-C

SHAP-C

Positively-predicted test 

instances

max. 5 minutes

max. 30 features

Evaluation

Percentage 

explained

Switching point

Computation time
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SEDC: max 50 iterations

LIME/SHAP-C: 5000 samples
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RESULTS & CONCLUSION



EFFECTIVENESS
Table 2: Percentage explained 

3929th of October 2019, Invited Talk Lenddo, New York City



EFFECTIVENESS
Table 3: Switching point in # features (Median + Interquantile range)
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EFFICIENCY
Table 4: Computation time in seconds (Median + Interquantile range)

4129th of October 2019, Invited Talk Lenddo, New York City



EFFICIENCY: time vs switching point
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EFFICIENCY: time vs active features
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CONCLUSION
• SEDC most efficient and effective for small instances, however

- computation time very sensitive to switching point 
- flaw in heuristic best-first for some nonlinear models

• SHAP-C overall good performance, however
- problems with highly unbalanced data
- computation time more sensitive to # active features than LIME-C

Þ LIME-C most favourable search algorithm: best tradeoff
- low computation times
- least sensitive to switching point and # active features  
- stable performance in terms of effectiveness criteria 
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FURTHER RESEARCH

● More data sets and models
● Study efficiency-effectiveness tradeoff of the algorithms
● Evaluate other hybrid algorithms
● Other objectives of the algorithm 
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