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INSTANCE-LEVEL EXPLANATION ALGORITHMS
ON BEHAVIORAL AND TEXTUAL DATA:
A COUNTERFACTUAL-ORIENTED COMPARISON
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6,040 users

MOVIE VIEWING DATA (MovieLens)

Active feature = “evidence”
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Sparsity p = 95,53%
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Black box model
—Thousands of coefficients
—=Nonlinear techniques

Comprehensibility issues
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Movie Viewing Data (MovieLens)

Black box model
—Thousands of coefficients

—=Nonlinear techniques

INSTANCE-LEVEL EXPLANATIONS:

Why relevant?
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WHY EXPLANATIONS?

Improving the model: data leakage, overfitting, misclassifications
Trust and acceptance

Detect bias / discrimination

Formal objectives vs ethical objectives

Compliance (e.g., right to explanations)
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WHY EXPLANATIONS?

. Improving the model: explain misclassifications
Example: objectionable web content detection (Martens & Provost, 2013)

» » 9 = 1if objectionable
elsey =0

Web pages Black box model
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WHY EXPLANATIONS?

« Improving the model: explain misclassifications
Example: objectionable web content detection (Martens & Provost, 2013)

y=0

"Why was this page NOT
Black box model classified as objectionable?”
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WHY EXPLANATIONS?

. Improving the model: explain misclassifications
Example: objectionable web content detection (Martens & Provost, 2013)

IF the word "bikini" was not on the
page, THEN the predicted class
would change from non-objectionable

SUMMER

G 2 L ¥ WITHOUT L
S WP, BIKINI! ‘ to objectionable
- BlKINI'éSPECIALCATEGORY 3 @VIRTUAI.REAL
Misclassified web page:
predicted as non-objectionable Why?
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WHY EXPLANATIONS?

. Trust and acceptance
Example: explainable legal document classification (chhatwal et al., 2019)

» » y = 1if responsive
elsey =0

Legal documents

Black box model
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WHY EXPLANATIONS?

. Trust and acceptance
Example: explainable legal document classification (chhatwal et al., 2019)

RE= » » y=1 / .
Whyis

Legal document Black box model this document
classified
as responsive?”
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WHY EXPLANATIONS?

- Generate insights
Example: Know your customer (e.g., Hall, 2012; Grossnickle, 2001)

.

» » y = 1ifinterested in product
elsey =0

Visited URL Black box model
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WHY EXPLANATIONS?

- Generate insights
Example: Know your customer (e.g., Hall, 2012; Grossnickle, 2001)

£

B . " . N
Visited URLS Black box model AR D L ittt

Why are we targeting them?”
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COUNTERFACTUAL EXPLANATIONS

Instance-level explanation of particular prediction

Insight into how model works (causality within model)

Rule: a minimal set of features such that the predicted class
changes when “removing” them (~setting value to zero)
Comprehensible and concise

Argued to be the most intuitive and valuable for humans because
they are contrastive ("Why X rather than not-X?"; Miller, 2017)
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COUNTERFACTUAL EXPLANATIONS

Example: gender prediction using movie viewing data g 23 < g
UUUUU 1 0 0 1 M

User 1 1 0 0 |F

User 1 0 0 0 M

Sam watched 120 movies
Sam was predicted as ‘male’
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COUNTERFACTUAL EXPLANATIONS

Example: gender prediction using movie viewing data g 23 < g
UUUUU 1 0 0 1 M

User 1 1 0 0 |F

User 1 0 0 0 M

Sam watched 120 movies
Sam was predicted as ‘male Why?

29th of October 2019, Invited Talk Lenddo, New York City

18



COUNTERFACTUAL EXPLANATIONS

Example: gender prediction using movie viewing data

ooy Sam watched 120 movies
i Sam was predicted as ‘male’

IF Sam would not have watched {Taxi Driver, The Dark Knight, Die
Hard, Terminator 2, Now You See Me, Interstellar},
THEN the predicted class changes from ‘male’ to ‘female’
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WHY COMPLETE SEARCH FAILS

Start with removing one feature and increase number of features
in the subset until the predicted class changes

Scales exponentially with active features m and required number
of features k to be removed
e.g., for an instance with m features, a combination of k features

requires evaluations

(m—-k)!k!
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Number of combinations (in thousands)

WHY COMPLETE SEARCH FAILS

Figure 1: Number of combinations (a) and time elapsed (b) per iteration
for an instance with 34 active features and a counterfactual of 6 features (MovielLens data)
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ALGORITHMIC ASSUMPTIONS

Goal: find counterfactual explanation as fast and as

concise as possible (efficiency-effectiveness tradeoff)
Model-agnostic

Max. 30 features in explanation
Max. b minutes to compute explanation
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BEST-FIRST SEARCH (SEDC)

Explaining document classifications (Martens & Provost, 2013)
Model-agnostic algorithm SEDC: heuristic best-first search
(lin-SEDC: linear implementation)

Optimal for linear models

@ Implementation on https://github.com/yramon/edc
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https://github.com/yramon/edc

BEST-FIRST SEARCH (SEDC)

Check active

features

Class change?

Expand best-first
feature (set) with No?
one extra feature

Counterfactual

= explanation found

Class change?
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NOVEL HYBRID ALGORITHMS

Additive Feature Attribution methods:
. LIME: Local Model-agnostic Explainer (Ribeiro et al., 2016)
. SHAP: Shapley Additive Explanations (Lundberg et al., 2018)

Output: importance-ranked list
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NOVEL HYBRID ALGORITHMS

LIME / SHAP

Sparse, linear explanation model
Approximates original model in neighbourhood of instance

Perturbed instances
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Ribeiro et al., 2016
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NOVEL HYBRID ALGORITHMS

LIME / SHAP
Example: gender prediction using movie viewing data

0.211 Die Hard
@ 0.205 Mission Impossible
Y 0.202 Saving Private Ryan
x 0.197 Now you see me

0.192

0.186 Tarzan

-0.185
Terminator 2

Taxi Driver

Stop Making Sense
0.183
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NOVEL HYBRID ALGORITHMS

Originality: importance rankings may be “intelligent”
starting point for efficiently searching counterfactuals

- Novel algorithms: LIME-C and SHAP-C
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NOVEL HYBRID ALGORITHMS

LIME-C / SHAP-C

Example: gender prediction using movie viewing data

0.211

O 0.205

) 0.202
x 0.197
0.192

0.186

Stop Making Sense
0.183

Die Hard
Mission Impossible
Saving Private Ryan

Now you see me
Taxi Driver

Tarzan

- 0.185

Terminator 2

Remove features with
positive importance
weight until the

class changes
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CONTRIBUTIONS

Two novel model-agnostic algorithms (LIME-C / SHAP-C)
Define quantitative evaluation criteria

Evaluate performance against existing SEDC algorithm
and make practical recommendations
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EXPERIMENTAL SETUP




Collect data sets

and build models

Table 1: Data sets and characteristics

Dataset Type Target Instances Features b p Test set (%) Miin Mpontin ~ Tef
Flickr* B comments 100,000 190,991 36.91% 99.99% 20,000 (20%) 2.02 296 (38
Ecommerce® B gender 15,000 21,880 21.98% 99.99% 3,000 (15%) 2.60 267 3]
Airline* T sentiment 14,640 5183  16.14%  99.82% 2,928 (15%) 7.81 8.21 2]
Twitter T topic 6,000 4560 9.15% 99.74% 1218 (10%) 952 9.35  [5]
Fraud* B fraudulent 858,131 107,345 6.4e-5%  99.99%  171,627(1%)  11.83 14.09 na.
YahooMovies* B gender 7,642 11,915 28.87% 99.76% 1,529 (20%)  25.24 25.00 6]
TaFeng* B age 31640 23719 45.23% 99.90% 6,328 (15%) 44.32  37.24  [23]
KDD2015* B dropout 120,542 4,835 20.71% 99.67% 24,109 (20%)  49.01 46.40 4]
20news T atheism 18,846 41,356 4.24%  99.84% 3,770 (5%)  67.96 6277 (1]
Movielens_100k B gender 943 1,682 28.95% 93.69% 189 (25%)  68.73 7342 [21]
Facebook™® B gender 386,321 122,924 44.57% 99.94% 77,265 (30%)  83.03 84.55 9]
Movielens_1m* B gender 6,040 3,706 28.29%  95.53% 1,208 (25%) 168.46  153.46  [21]
Libimseti* B gender 137,806 166,353  44.53% 99.93% 27,562 (30%) 229.16  226.97 8]

~ N
Textual data:
linear/rbf SVM

\_ Y,

~ A

Behavioral data:
LR/MLP
\_ Y,
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Collect data sets
and build models

Generate
explanations for

test instances

Textual data: ] SEDC |
linear/rbf SVM r )
\_ Y, LIME-C
4 N .
Behavioral data: SHAP-C |
LR/MLP :
\_ ) Positively-predicted test

instances

max. 5 minutes
max. 30 features

SEDC: max 50 iterations
LIME/SHAP-C: 5000 samples

Evaluation
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EVALUATION CRITERIA

The goal is to find a small-sized counterfactual as fast as
possible = tradeoff between

Effectiveness

Percentage explained

Switching point: # features in explanation
Efficiency

Computation time in seconds
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Collect data sets
and build models

Generate
explanations for

test instances

Evaluation

Textual data: ] SEDC |
linear/rbf SVM r )
\_ Y, LIME-C
4 N .
Behavioral data: SHAP-C |
LR/MLP :
\_ ) Positively-predicted test

instances

max. 5 minutes
max. 30 features

SEDC: max 50 iterations
LIME/SHAP-C: 5000 samples

Percentage
explained

Switching point

\.

Computation time

J
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EFFECTIVENESS

Table 2: Percentage explained

Linear Nonlinear
Dataset SEDC (%) LIME-C (%) SHAP-C (%) | SEDC (%) LIME-C (%) SHAP-C (%)
Flickr 100 100 100 28.67 28.33 28.67
Ecommerce 100 97.33 100 95.00 97.00 99.67
Airline 100 100 100 100 100 100
Twitter 100 100 100 100 100 100
Fraud 100 100 81.67 100 100 75
YahooMovies 100 100 100 98.67 100 100
TaFeng 100 100 100 93.33 100 100
KDD2015 100 100 100 99.67 100 99.67
20news 99.47 99.47 100 99.47 98.94 100
Movielens_100k 100 100 100 100 100 100
Facebook 95.67 95.00 95.00 70.33 92.67 89.67
Movielens_1m 98.67 98.67 98.67 88.33 95.00 95.67
Libimseti 92.67 90.33 88.67 77.00 81.67 72.33
Average 98.96 98.52 97.23 88.49 91.82 89.28
# wins 12 9 10 5 9 9
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EFFECTIVENESS

Table 3: Switching point in # features (Median + Interquantile range)

| Linear | Nonlinear
Dataset | SEDC LIME-C SHAP-C Random | SEDC LIME-C SHAP-C Random
Flickr 1(1-1) 1(1-1) 1(1-1) 1(1-1) | 1(1-1) 1(1-1) 1(1-1)
Ecommerce 1(1-1) 1(1-1) 1(1-1) 1(1-2) 1(1-1) 1(1-1) 1(1-1)
Airline 1(1-2)  1(1-2) 1(1-2) 201-3) | 1(1-1) 1(1-1) 1(1-1) 2
Twitter 2(1-3)  2(1-3) 2(1-3) 32-5) | 1(1-1) 1(1-1) 1(1-1) 3(2—525
Fraud 1(1-1)  1(1-1) 1(1-1) 1(1-1) | 1(1-1) 1(1-1) 1(1-1)
YahooMovies | 2(1-4) 2(1-4) 2(1-4) 42-17) 1(1-3) 2(1-3) 2(1-3) 4(2 - 12)
TaFeng 2(1-4)  2(1-4) 2(1-4) 53— 11) | 2(1-8) 2(1-3)  2(1-3.05) 6(3— 17
KDD2015 3(1-7)  3(1-7) 3(1-7) 85(3-17.25) | 2(1-3) 2(1-3.95) 2(1-4.5) 52— ¢
20news 2(1-4)  2(1-4) 2(1-4) 11(4—235) | 1(1-3) 1(1-3) 1(1-3) 83— 18
Movielens_100k | 2(1-4)  2(1-4) 2(1-4) 5503 — 10) 2(1-4) 2(1-4) 2(1-4)  5(2-925
Facebook 3(2-8) 3(2-8) 3(2-8) 8(4—20) | 4(1—-13) 3(1-4.4) 3(1.2-5) 9(4.5
Movielens_1m | 3(2-7) 3(2-7) 3(2-7) 9(4 — 19.25) 3(1-5) 3(1-6) 3(1-6) 73— 14
Libimseti 3(2-6) 3(2-6.2)  3(2-6.2)  20(13 — 52) 2(1-5) 4.2(1.8 —8.8) 5(2.5—11.2) 19(8 — 387
# wins | 13 13 13 3| 12 11 11
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EFFICIENCY

Table 4: Computation time in seconds (Median + Interquantile range)

| Linear Nonlinear

Dataset | SEDC LIME-C SHAP-C SEDC LIME-C SHAP-C
Flickr 0.01(0.00-0.02) 0.34(0.33 — 0.35)  0.08(0.08 — 0.08) | 0.02(0.00-0.02) 0.39(0.39 — 0.42) 0.12(0.09 — 0.25)
Ecommerce 0.02(0.00-0.02) 0.34(0.33 — 0.36)  0.02(0.02-0.03) | 0.02(0.00-0.02) 0.39(0.38 — 0.41)  0.03(0.03 — 0.03)
Airline 0.02(0.02-0.02)  0.94(0.81 — 1.08)  0.09(0.03 — 0.60) | 0.02(0.02-0.02) 1.35(1.17 — 1.51) 0.13(0.04 — 0.82)
Twitter 0.03(0.02-0.05) 0.61(0.56 — 0.64) 0.18(0.06 — 0.46) | 0.02(0.01-0.02) 0.67(0.63 — 0.69) 0.15(0.06 — 0.47)
Fraud 0.01(0.00-0.02)  0.38(0.36 — 0.39)  0.07(0.06 — 0.08) | 0.01(0.01-0.01) 0.43(0.42 — 0.44) 0.09(0.07 — 0.17)
YahooMovies 0.03(0.02-0.08) 0.44(0.43 — 0.49)  0.96(0.90 — 1.00) | 0.06(0.03-0.20) 0.82(0.79 — 0.85) 1.35(1.28 — 1.39)
TaFeng 0.05(0.02-0.22) 0.50(0.45 — 0.59)  1.03(0.97 — 1.08) | 0.04(0.02-0.40) 0.51(0.46 — 0.59) 1.01(0.95 — 1.06)
KDD2015 0.11(0.02-0.79) 0.52(0.47 — 0.61) 1.04(0.99 — 1.09) | 0.14(0.04-0.56) 0.84(0.78 — 0.94) 1 ;7(1 31 — 1.45)
20news 0.19(0.05-1.34) 3.12(2.09 — 4.18) 3.65(2.74 — 4.49) | 0.09(0.03-0.68) 2 1()( 49 — 2.95) 53(1.99 — 3.09)
Movielens_100k | 0.06(0.03-0.30) 0. 49(0 44—0.69) 0.87(0.83 —1.04) | 0.09(0.04-0.35) 55(0.50 — 0.83) 1 10(1 02 — 1.27)
Facebook 0.12(0.03-1.17) 55(0.46 — 0.75)  1.11(1. 04 —1.23) | 0.19(0.02-2.20) 51(0.46 — 0.59)  1.06(1.00 — 1.12)
Movielens_lm | 0.37(0.06-3.09) 0 74( 52 —1.21) 1.21(1.05 — 1.53) | 0.39(0.07-1.56) 0 ,()( 59 — 1.12) 1. 2()(1 1() — 1.54)
Libimseti 0.36(0.14-2.26) 1.07(0.92 — 1.38) 1.3/(1 2, —1.52) | 0.39(0.09-1.56) 1.02(0.91 — 1.23) 1.42(1.35 — 1.53)
# wins | 13 0 1 13 0 0
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EFFICIENCY: time vs switching point
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EFFICIENCY: time vs active features

Computation time (in seconds)
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CONCLUSION

- SEDC most efficient and effective for small instances, however
- computation time very sensitive to switching point
- flaw in heuristic best-first for some nonlinear models

- SHAP-C overall good performance, however
- problems with highly unbalanced data
- computation time more sensitive to # active features than LIME-C

— LIME-C most favourable search algorithm: best tradeoff
- low computation times
- least sensitive to switching point and # active features

- stable performance in terms of effectiveness criteria
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FURTHER RESEARCH

More data sets and models

Study efficiency-effectiveness tradeoff of the algorithms
Evaluate other hybrid algorithms

Other objectives of the algorithm
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