

INSTANCE-LEVEL EXPLANATION ALGORITHMS ON BEHAVIORAL AND TEXTUAL DATA: A COUNTERFACTUAL-ORIENTED COMPARISON

Yanou Ramon, David Martens, Foster Provost, Theodoros Evgeniou

PROBLEM STATEMENT

MOVIE VIEWING DATA (MovieLens)

Active feature = "evidence"

		Star wars	Pearl Harbor	Django	:	Home	Target \hat{y} Gender
10	User 1	1	0	0		1	M
users	User 2	1	1	0		0	F
6,040 users							
9	User n	1	0	0		0	М

Sparsity *p* = 95,53%

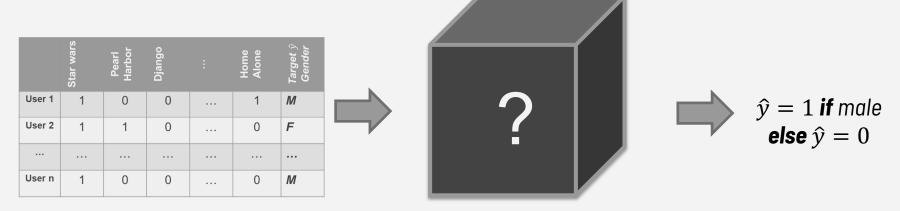


Movie Viewing Data (MovieLens)

Black box model

- ⇒Thousands of coefficients
- ⇒Nonlinear techniques

Comprehensibility issues



Movie Viewing Data (MovieLens)

Black box model

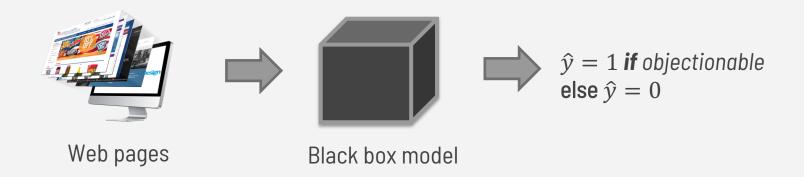
- ⇒Thousands of coefficients
- ⇒Nonlinear techniques

INSTANCE-LEVEL EXPLANATIONS: Why relevant?

- Improving the model: data leakage, overfitting, misclassifications
- Trust and acceptance
- Detect bias / discrimination
- Formal objectives vs ethical objectives
- Compliance (e.g., right to explanations)
- ...

Improving the model: explain misclassifications

Example: objectionable web content detection (Martens & Provost, 2013)



Improving the model: explain misclassifications

Example: objectionable web content detection (Martens & Provost, 2013)

Web page

Black box model

"Why was this page **NOT** classified as objectionable?"

 $\hat{\mathbf{y}} = 0$

Improving the model: explain misclassifications

Example: objectionable web content detection (Martens & Provost, 2013)

Misclassified web page: predicted as non-objectionable

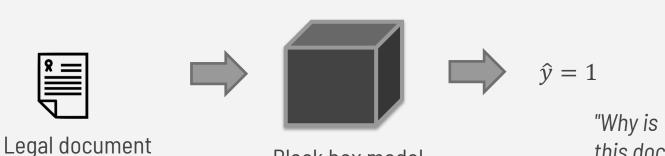
IF the word "bikini" was not on the page, THEN the predicted class would change from non-objectionable to objectionable

Trust and acceptance

Example: explainable legal document classification (Chhatwal et al., 2019)

Trust and acceptance

Example: explainable legal document classification (Chhatwal et al., 2019)

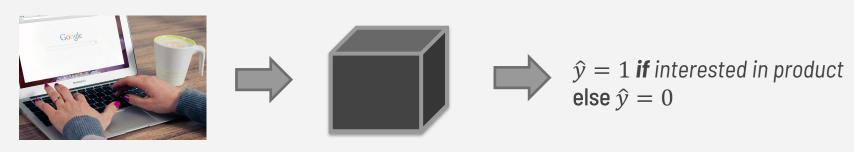


Black box model

"Why is this document classified as responsive?"

Generate insights

Example: Know your customer (e.g., Hall, 2012; Grossnickle, 2001)



Visited URLs

Black box model

Generate insights

Example: Know your customer (e.g., Hall, 2012; Grossnickle, 2001)

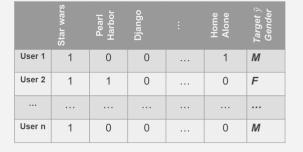
Visited URLs

Black box model

"Who are we targeting? Why are we targeting them?"

- Instance-level explanation of particular prediction
- Insight into how model works (causality within model)
- Rule: a minimal set of features such that the predicted class changes when "removing" them (~setting value to zero)
- Comprehensible and concise
- Argued to be the most intuitive and valuable for humans because they are contrastive ("Why X rather than not-X?"; Miller, 2017)

Example: gender prediction using movie viewing data



Sam watched 120 movies Sam was predicted as 'male'

Example: gender prediction using movie viewing data

	Star wars	Pearl Harbor	Django	Home Alone	Target ŷ Gender
User 1	1	0	0	 1	M
User 2	1	1	0	 0	F
User n	1	0	0	 0	М

Sam watched 120 movies Sam was predicted as 'male'

Example: gender prediction using movie viewing data

Sam watched 120 movies Sam was predicted as 'male'

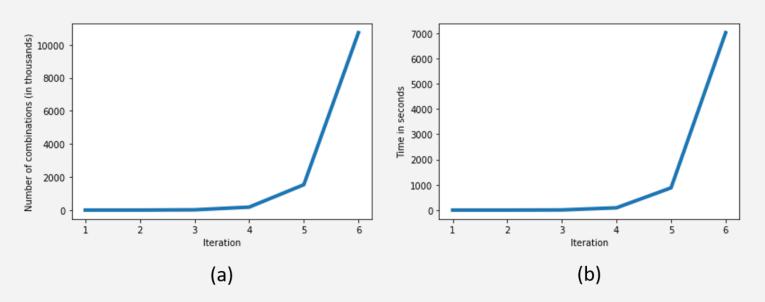
IF Sam would not have watched {Taxi Driver, The Dark Knight, Die Hard, Terminator 2, Now You See Me, Interstellar},
THEN the predicted class changes from 'male' to 'female'

WHY COMPLETE SEARCH FAILS

- Start with removing one feature and increase number of features in the subset until the predicted class changes
- Scales exponentially with active features m and required number of features k to be removed e.g., for an instance with m features, a combination of k features requires $\frac{m!}{(m-k)!k!}$ evaluations

WHY COMPLETE SEARCH FAILS

Figure 1: Number of combinations (a) and time elapsed (b) per iteration for an instance with 34 active features and a counterfactual of 6 features (*MovieLens data*)



COUNTERFACTUAL ALGORITHMS

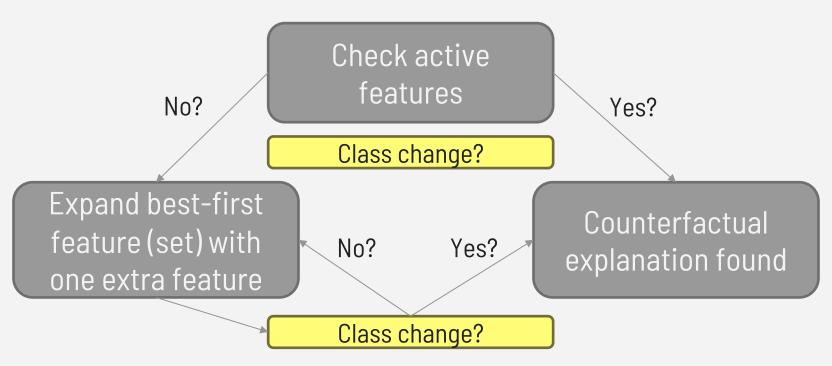
ALGORITHMIC ASSUMPTIONS

- **Goal**: find counterfactual explanation as fast and as concise as possible (efficiency-effectiveness tradeoff)
- Model-agnostic
- Max. 30 features in explanation
- Max. 5 minutes to compute explanation

BEST-FIRST SEARCH (SEDC)

- Explaining document classifications (Martens & Provost, 2013)
- Model-agnostic algorithm SEDC: heuristic best-first search (lin-SEDC: linear implementation)
- Optimal for linear models

BEST-FIRST SEARCH (SEDC)



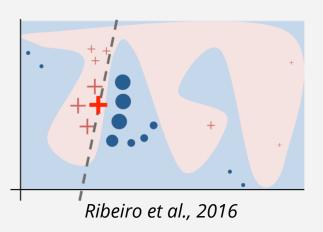
Additive Feature Attribution methods:

- LIME: Local Model-agnostic Explainer (Ribeiro et al., 2016)
- SHAP: Shapley Additive Explanations (Lundberg et al., 2018)

Output: importance-ranked list

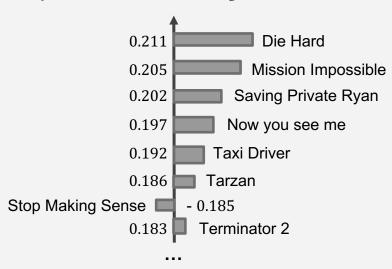
LIME / SHAP

- Sparse, linear explanation model
- Approximates original model in neighbourhood of instance
- Perturbed instances



LIME / SHAP

Example: gender prediction using movie viewing data

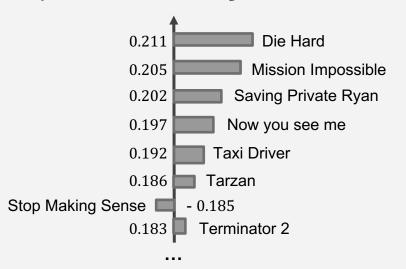


Originality: importance rankings may be "intelligent" starting point for efficiently searching counterfactuals

⇒ Novel algorithms: LIME-C and SHAP-C

LIME-C / SHAP-C

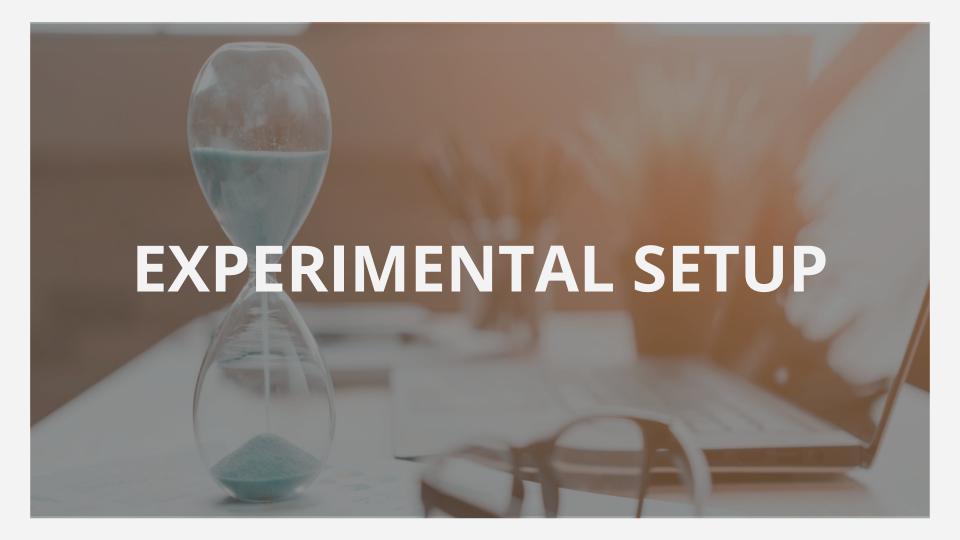
Example: gender prediction using movie viewing data



Remove features with positive importance weight until the class changes

CONTRIBUTIONS

- Two novel model-agnostic algorithms (LIME-C / SHAP-C)
- Define quantitative evaluation criteria
- Evaluate performance against existing SEDC algorithm and make practical recommendations



Collect data sets and build models

Textual data: linear/rbf SVM

Behavioral data: LR/MLP

Table 1: Data sets and characteristics

Dataset	Type	Target	Instances	Features	b	p	Test set (%)	\dot{m}_{lin}	\dot{m}_{nonlin}	\mathbf{ref}
Flickr*	В	comments	100,000	190,991	36.91%	99.99%	20,000 (20%)	2.02	2.96	[38]
Ecommerce*	В	gender	15,000	21,880	21.98%	99.99%	3,000 (15%)	2.60	2.67	[3]
Airline*	${ m T}$	sentiment	14,640	5,183	16.14%	99.82%	2,928 (15%)	7.81	8.21	[2]
Twitter	${ m T}$	topic	6,090	4,569	9.15%	99.74%	1,218 (10%)	9.52	9.35	[5]
Fraud*	В	fraudulent	858,131	107,345	$6.4e ext{-}5\%$	99.99%	171,627(1%)	11.83	14.09	n.a.
YahooMovies*	В	gender	7,642	11,915	28.87%	99.76%	1,529 (20%)	25.24	25.00	[6]
TaFeng*	В	age	31,640	23,719	45.23%	99.90%	6,328 (15%)	44.32	37.24	[23]
KDD2015*	В	dropout	120,542	4,835	20.71%	99.67%	24,109 (20%)	49.01	46.40	[4]
20news	${ m T}$	atheism	18,846	41,356	4.24%	99.84%	3,770 (5%)	67.96	62.77	[1]
Movielens_100k	В	gender	943	1,682	28.95%	93.69%	189 (25%)	68.73	73.42	[21]
Facebook*	В	gender	386,321	122,924	44.57%	99.94%	77,265 (30%)	83.03	84.55	[9]
Movielens_1m*	В	gender	6,040	3,706	28.29%	95.53%	1,208 (25%)	168.46	153.46	[21]
Libimseti*	В	gender	137,806	166,353	44.53%	99.93%	27,562 (30%)	229.16	226.97	[8]

Collect data sets and build models

Generate explanations for test instances

Evaluation

Textual data: linear/rbf SVM

Behavioral data: LR/MLP **SEDC**

LIME-C

SHAP-C

Positively-predicted test instances

max. 5 minutes max. 30 features

SEDC: max 50 iterations LIME/SHAP-C: 5000 samples

EVALUATION CRITERIA

The **goal** is to find a small-sized counterfactual as fast as possible → **tradeoff** between

Effectiveness

Percentage explained

Switching point: # features in explanation

Efficiency

Computation time in seconds

Collect data sets and build models

Generate explanations for test instances

SEDC

LIME-C

Evaluation

Textual data: linear/rbf SVM

LR/MLP

SHAP-C Behavioral data:

Percentage explained

Switching point

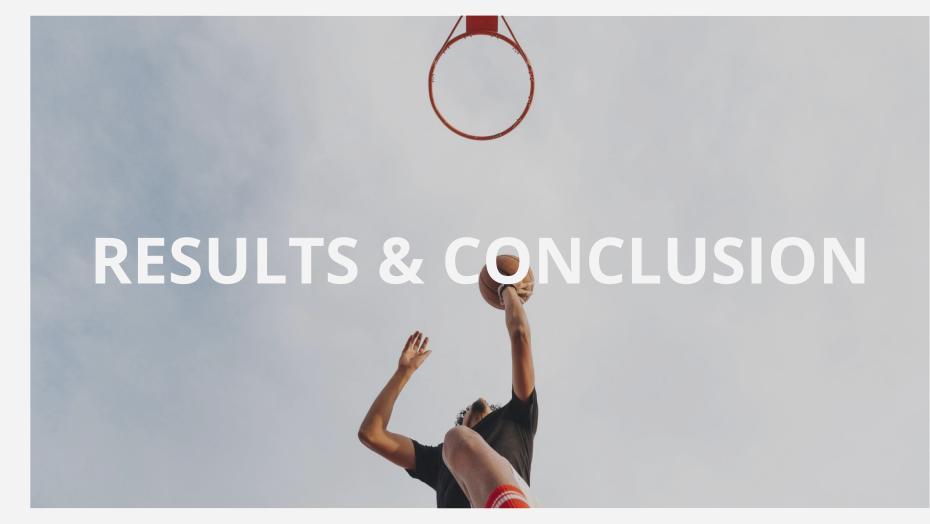
Computation time

Positively-predicted test instances

> max. 5 minutes max. 30 features

SEDC: max 50 iterations LIME/SHAP-C: 5000 samples

37



EFFECTIVENESS

Table 2: Percentage explained

		Linear		Nonlinear				
Dataset	SEDC (%)	LIME-C $(\%)$	SHAP-C $(\%)$	SEDC (%)	LIME-C $(\%)$	SHAP-C (%)		
Flickr	100	100	100	28.67	28.33	28.67		
Ecommerce	100	97.33	100	95.00	97.00	99.67		
Airline	100	100	100	100	100	100		
Twitter	100	100	100	100	100	100		
Fraud	100	100	81.67	100	100	75		
YahooMovies	100	100	100	98.67	100	100		
TaFeng	100	100	100	93.33	100	100		
KDD2015	100	100	100	99.67	100	99.67		
20news	99.47	99.47	100	99.47	98.94	100		
Movielens_100k	100	100	100	100	100	100		
Facebook	95.67	95.00	95.00	70.33	92.67	89.67		
$Movielens_1m$	98.67	98.67	98.67	88.33	95.00	95.67		
Libimseti	92.67	90.33	88.67	77.00	81.67	72.33		
Average	98.96	98.52	97.23	88.49	91.82	89.28		
# wins	12	9	10	5	9	9		

EFFECTIVENESS

Table 3: Switching point in # features (Median + Interquantile range)

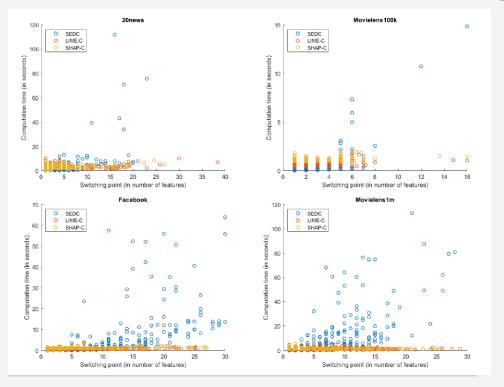
		Linear				Nonlinear		
Dataset	SEDC	LIME-C	SHAP-C	Random	SEDC	LIME-C	SHAP-C	Random
Flickr	1(1-1)	1(1-1)	1(1-1)	1(1-1)	1(1-1)	1(1-1)	1(1-1)	1(1-2)
Ecommerce	1(1-1)	1(1-1)	1(1-1)	1(1-2)	1(1-1)	1(1-1)	1(1-1)	1(1-1)
Airline	1(1-2)	1(1-2)	1(1-2)	2(1-3)	1(1-1)	1(1-1)	1(1-1)	2(1-3)
Twitter	2(1-3)	2(1-3)	2(1-3)	3(2-5)	1(1-1)	1(1-1)	1(1-1)	3(2-5.5)
Fraud	1(1-1)	1(1-1)	1(1-1)	1(1-1)	1(1-1)	1(1-1)	1(1-1)	1(1-2)
YahooMovies	2(1-4)	2(1-4)	2(1-4)	4(2-7)	1(1-3)	2(1-3)	2(1-3)	4(2-12)
TaFeng	2(1-4)	2(1-4)	2(1-4)	5(3-11)	2(1-8)	2(1-3)	2(1-3.05)	6(3-17)
KDD2015	3(1-7)	3(1-7)	3(1-7)	8.5(3-17.25)	2(1-3)	2(1-3.95)	2(1-4.5)	5(2-9)
20news	2(1-4)	2(1-4)	2(1-4)	11(4-23.5)	1(1-3)	1(1-3)	1(1-3)	$8\overline{(3-18)}$
Movielens_100k	2(1-4)	2(1-4)	2(1-4)	5.5(3-10)	2(1-4)	2(1-4)	2(1-4)	$5(\overline{2-9.25})$
Facebook	3(2-8)	3(2-8)	3(2-8)	8(4-20)	4(1-13)	3(1-4.4)	3(1.2-5)	$9(\overline{4.5 - 19.5})$
$Movielens_1m$	3(2-7)	3(2-7)	3(2-7)	9(4-19.25)	3(1-5)	3(1-6)	3(1-6)	7(3-14)
Libimseti	3(2-6)	3(2-6.2)	3(2-6.2)	29(13-52)	2(1-5)	4.2(1.8 - 8.8)	5(2.5 - 11.2)	$19\overline{(8-38.5)}$
# wins	13	13	13	3	12	11	11	3

EFFICIENCY

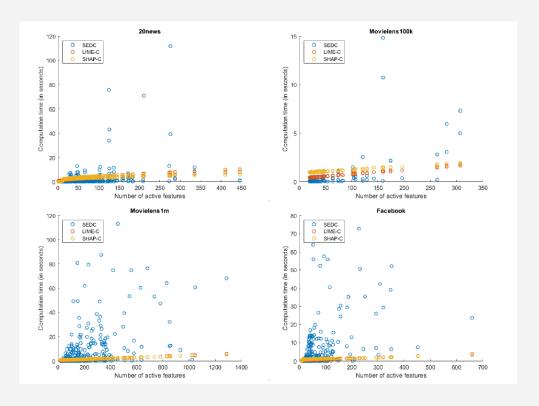
Table 4: Computation time in seconds (Median + Interquantile range)

		Linear			Nonlinear	
Dataset	SEDC	LIME-C	SHAP-C	SEDC	LIME-C	SHAP-C
Flickr	0.01(0.00 - 0.02)	0.34(0.33 - 0.35)	0.08(0.08 - 0.08)	0.02(0.00 - 0.02)	0.39(0.39 - 0.42)	0.12(0.09 - 0.25)
Ecommerce	0.02(0.00 - 0.02)	$\overline{0.34(0.33 - 0.36)}$	$\overline{0.02(0.02\text{-}0.03)}$	0.02(0.00 - 0.02)	$\overline{0.39(0.38 - 0.41)}$	0.03(0.03 - 0.03
Airline	0.02(0.02 - 0.02)	$\overline{0.94(0.81 - 1.08)}$	0.09(0.03 - 0.60)	0.02(0.02 - 0.02)	$\overline{1.35(1.17 - 1.51)}$	0.13(0.04 - 0.82)
Twitter	0.03(0.02 - 0.05)	$\overline{0.61(0.56 - 0.64)}$	$\overline{0.18(0.06 - 0.46)}$	0.02(0.01 - 0.02)	$\overline{0.67(0.63 - 0.69)}$	0.15(0.06 - 0.47)
Fraud	0.01(0.00 - 0.02)	$\overline{0.38(0.36 - 0.39)}$	$\overline{0.07(0.06 - 0.08)}$	0.01(0.01 - 0.01)	$\overline{0.43(0.42-0.44)}$	0.09(0.07 - 0.17)
YahooMovies	0.03(0.02 - 0.08)	$\overline{0.44(0.43 - 0.49)}$	0.96(0.90 - 1.00)	0.06(0.03 - 0.20)	$\overline{0.82(0.79 - 0.85)}$	1.35(1.28 - 1.39)
TaFeng	0.05(0.02 - 0.22)	$\overline{0.50(0.45 - 0.59)}$	$\overline{1.03(0.97 - 1.08)}$	0.04(0.02-0.40)	$\overline{0.51(0.46 - 0.59)}$	1.01(0.95 - 1.06)
KDD2015	0.11(0.02 - 0.79)	$\overline{0.52(0.47 - 0.61)}$	1.04(0.99 - 1.09)	0.14(0.04 - 0.56)	$\overline{0.84(0.78 - 0.94)}$	1.37(1.31 - 1.45)
20news	0.19(0.05 - 1.34)	$\overline{3.12(2.09 - 4.18)}$	$\overline{3.65(2.74 - 4.49)}$	0.09(0.03 - 0.68)	2.16(1.49 - 2.95)	2.53(1.99 - 3.09)
Movielens_100k	0.06(0.03 - 0.30)	$\overline{0.49(0.44 - 0.69)}$	$\overline{0.87(0.83 - 1.04)}$	0.09(0.04 - 0.35)	$\overline{0.55(0.50 - 0.83)}$	1.10(1.02 - 1.27)
Facebook	0.12(0.03-1.17)	0.55(0.46 - 0.75)	1.11(1.04 - 1.23)	0.19(0.02 - 2.20)	0.51(0.46 - 0.59)	1.06(1.00 - 1.12)
Movielens_1m	0.37(0.06 - 3.09)	0.74(0.52 - 1.21)	1.21(1.05 - 1.53)	0.39(0.07 - 1.56)	0.76(0.59 - 1.12)	1.29(1.16 - 1.54)
Libimseti	0.36(0.14 - 2.26)	1.07(0.92 - 1.38)	1.37(1.27 - 1.52)	0.39(0.09 - 1.56)	1.02(0.91 - 1.23)	1.42(1.35 - 1.53)
# wins	13	0	1	13	0	0

EFFICIENCY: time vs switching point



EFFICIENCY: time vs active features



CONCLUSION

- **SEDC** most efficient and effective for small instances, however
 - computation time very sensitive to switching point
 - flaw in heuristic best-first for some nonlinear models
- **SHAP-C** overall good performance, however
 - problems with highly unbalanced data
 - computation time more sensitive to # active features than LIME-C
- ⇒ **LIME-C** most favourable search algorithm: best tradeoff
 - low computation times
 - least sensitive to switching point and # active features
 - stable performance in terms of effectiveness criteria

FURTHER RESEARCH

- More data sets and models
- Study efficiency-effectiveness tradeoff of the algorithms
- Evaluate other hybrid algorithms
- Other objectives of the algorithm