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Overview

1. Interpretability issues of prediction models on behavioral data
Rule extraction with metafeatures
Empirical results

Implications

ok W

Key takeaways
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Behavioral data
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Behavioral lata Applications

Targeted advertising
Churn prediction
Fraud detection
Credit scoring
Pricing
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R u | e ex-[ ra [[l O n (e.g., Baesens et al., 2003, Martens et al., 2007, Guidotti et al., 2018)

- Explanation rules mimic predictions of model
- Limited complexity — small set of rules
- Model predictions are used as labels instead of ground-truth labels
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- Limited complexity — small set of rules
- Model predictions are used as labels instead of ground-truth labels

&Challenge: High dimensionality + sparsity + many relevant predictors
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- Explanation rules mimic predictions of model
- Limited complexity — small set of rules
- Model predictions are used as labels instead of ground-truth labels

&Challenge: High dimensionality + sparsity + many relevant predictors

&Small explanation does not explain much of the model’s behavior
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Contribution:

Rule extraction with metafeatures

Original features Metafeatures
Social media (e.g., Facebook likes) Categories
Financial transactions (e.g., Carrefour) Spending categories (e.g., Grocery stores)

Location data (e.g., Starbucks)

Movie viewing data

Venue types (e.g., Coffee shops)

Movie genres

Text data (e.g., Google searches) Topics

Browsing behavior

Website categories
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Contribution: Rule extraction with metafeatures
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ontribution: Rule extraction with metafeatures
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Example: Explanation rules with Facebook pages

[[ﬂ] Bart De Wever ]

WES:  Loarm ISR NO
[ &Y HLN.be &’ Kiimaatzaak
YES__,-—"'/ NO YES_,/" “\\No
[lfl De Wereld Morgen } [;{‘J Date With The Night ] [lﬁ‘] Andrea Pirlo ]
YES,” . NO YES.” . NO YES ./ .NO

N
~ 4 ~

Central | ) Central / ) ’ Central |
[ Left ][ Right ] [ Left ] nght] [ Right ][ Left ]

Note: Explanation rules for Logit model on all Facebook likes to predict political leaning.
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Example: Explanation rules with metafeatures

[ ¢’y ~ Right political ]

parties
. T TRSRARLL >26%
P 45 ~ Left poliical
{ lﬁ] ~ Environment ] [ parties ]
54%‘_‘,-—"'—- \“~~\>~4% <8% .-~ \\‘\\ >8%
) Ceﬁtrall - B :
[ 8’5 ~ Humor ] [ 'Y ~ Environment ] [ g’ ~ Environment ]
<03%  .>03% S6%. . >6% S2% N2 2%
Central / i . ; Central / . Central /
[ Left ] [ Right ] [ Right ] [ Left ] [ Right ] [ Left

]

Note: Explanation rules for Logit model on all Facebook likes. Data-driven metafeatures via non-negative matrix factorization (k=70).
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Apache PVDA
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Note: Explanation rules for Logit model on all Facebook likes. Data-driven metafeatures via non-negative matrix factorization (k=70).
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Empirical question

Do explanation rules extracted with metafeatures result in better
approximations of the model on behavioral data than explanations

with the original features?
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Empirical question

Do explanation rules extracted with metafeatures result in better
approximations of the model on behavioral data than explanations

with the original features?
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Evaluation

Fidelity — How well do explanation rules approximate the model?

Ground-truth labels Predictions of model Predictions of rules
1 1 1
1 0 0
0 1 1
1 1 0
Accuracy Fidelity
of prediction model of explanation rules
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>

when using metafeatures to explain

Difference in fidelity (%) MF vs. original features

A

Results: fidelity
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Note: Explanation rules for Logit on all features. Similar results for explanations of Random Forest model.
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Implications
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Implications

- Validation and insight
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Implications

- Validation and insight Amazon scraps secret Al recruiting tool that
. showed bias against women
- Et h ICS (o) Reference: Reuters, 2078g
) &
‘ ‘ Hiring algorithms are being put to the test
Reference: MIT Technology Review, 2021

Algorithms drive online discrimination, academic warns

Reference: Financial Times, 2019
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Implications

- Validation and insight
- Ethics
- Improvement

Data Science Meetup Leuven, March 2021, Gaining insight into Al systems

26



Implications

Dimension of the evidence pool: 37,685

< »
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) & x a2 topic?
- Ethics
- Improvement !
= 01 1 1 1 1 28 YES
:
§ 02 0 0 1 0 50 NO
Example: Document classification | o2 o o . |1 = ves

Figure 3a: 20 Newsgroups data to predict “Atheism” topic
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Example: Explanation rules with words
[ “atheism” ]

SO0 .- T ;-
“atheis'ts;” ] [ “choose” ]
041 T2 0 <005 . >005
[ “morality” ] [ “u‘se” ] l other’ [ \“exists” ]
— T <002, "\ >0.02 <043, TN 203
[ oth;r [ atl;eism [ atheism ] [ other ] [atheism ] [ other

Note: Explanation rules for Logit model on all words in 20news data (tf-idf representation) to predict topic “Atheism”. Reference: Ramon et al., 2020
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https://arxiv.org/abs/2003.04792

Example: Explanation rules with metafeatures

News posts
“Beauchaine”

[ Christianity ] [ Afterlife ]
>9% - T S 9% <04% .. T >04%

- ~ -
- -~ - ~

" ) Isra;)l—PaIestina
[ oy | (e |

<3.5%, . >3.5%

£13%." > 13%

(“otrer | [(atnesm | (em | ("ot ]

Note: Explanation rules for Logit model on all words. Data-driven metafeatures via non-negative matrix factorization (k=30). Reference: Ramon et al., 2020
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sank

sald

wn
b°ab ldgg‘g‘?
() -y
Lg S 3
manhattan ronx = =

News posts

“Beauchaine”

S%
Chnstia-nity ]
>9% -~ T 59%
[ Morality ] other
513%///’\\\:13%
other atheism

—.>9%
[ Afterlife ]
<04% . e >0.4%
other Israel-Palestina
Conflict
<35%, \>3.5%
atheism other

Note: Explanation rules for Logit model on all words. Data-driven metafeatures via non-negative matrix factorization (k=30). Reference: Ramon et al., 2020
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sank ‘In the Old testement, Satan is RARELY mentioned, if at all.

S a l d Huh? Doesn't the SDA Bible contain the book of Job?

% V e This is why there is suffering in the world, we are caught inthe crossfire.

b O = E)eog Bob Beauchaine
8 They said that Queens could stay, they blew the Bronx away,
5 © and sank Manhattan out at sea.
O )
manhattan éronx : D

News posts ] &Data leakage

“Beauchaine”

S o SPETR T TRSRRL, O
[ Christianity ] [ Afterlife ]
>9% .- T S9% $04% .. T >04%
. ) Israél—PaIestina
other other 3
[ g ] th [ Conflict ]
<13%,” N >13% $35%, . >3.5%
[ other [ atheism [ atheism other

Note: Explanation rules for Logit model on all words. Data-driven metafeatures via non-negative matrix factorization (k=30). Reference: Ramon et al., 2020
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Key takeaways

To gain insight into prediction models on behavioral data
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Key takeaways

To gain insight into prediction models on behavioral data

— use higher-level, less-sparse “metafeatures” to explain the model
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Key takeaways

To gain insight into prediction models on behavioral data
— use higher-level, less-sparse “metafeatures” to explain the model

Why?
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Key takeaways

To gain insight into prediction models on behavioral data

— use higher-level, less-sparse “metafeatures” to explain the model
Why?

— better approximation of model than explanations with original features
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Key takeaways

To gain insight into prediction models on behavioral data

— use higher-level, less-sparse “metafeatures” to explain the model

Why?

— better approximation of model than explanations with original features

— different types of information about model's behavior
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Thanks!

Yanou Ramon Prof. David Martens Prof. Theodoros Evgeniou Stiene Praet

Ramon'Y, Martens D, Evgeniou T, Praet S, Metafeatures-based rule extraction for classifiers
on behavioral and textual data, 2020, preprint: https://arxiv.org/abs/2003.04792
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Extra: Prediction models on behavioral data
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Extra: Prediction models on behavioral data
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Kosinski et al., 2013
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Extra: Prediction models on behavioral data
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Dimensionality reduction — worse predictive performance

(e.g., Junqué de Fortuny, 2015, Clark & Provost, 2019)
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https://www.liebertpub.com/doi/pdf/10.1089/big.2013.0037
https://link.springer.com/article/10.1007/s10618-019-00616-4

Extra: Gaining insight into prediction models on behavioral data

How? | Feature importance b =
(e.g., Breiman, 2001) e ,

Linear model approximation
(e.g., Ribeiro et al., 2016)

mmmmmmmmmmmmmmmmmmmm

Visual explanation Rule extraction
(e.g., partial dependence plots) ; (e.g., Baesens et al., 2003, Martens et al., 2007, Guidotti et al., 2018)
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