

Gaining insight into Al systems on digital footprints

> Yanou Ramon PhD researcher @ Applied Data Mining

35th Data Science Leuven Meetup - March 2021

Applied Data Mining

Prof. David Martens

Stiene Praet

Yanou Ramon

Tom Vermeire

Sofie Goethals

Raphael M.B. De Oliveira

Dieter Brughmans

Overview

- 1. Interpretability issues of prediction models on behavioral data
- 2. Rule extraction with metafeatures
- 3. Empirical results
- 4. Implications
- 5. Key takeaways

Behavioral data

Behavioral data

Applications

Targeted advertising Churn prediction Fraud detection Credit scoring Pricing

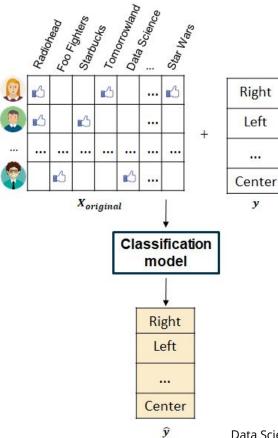
•••

Prediction models on behavioral data (Example: Facebook likes and political leaning) Reference: Praet et al., 2018

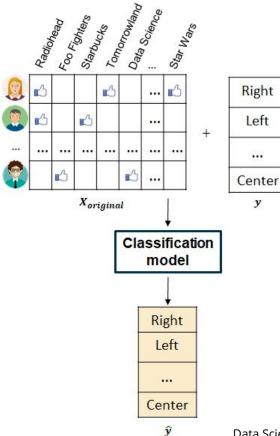
Radiohead Foo Fighters Starbucks Tomorrowiand Bata Science Star _{Mars} 3 L ... 6, 733 Facebook users L L 5,357 Facebook pages

Data Science Meetup Leuven, March 2021, Gaining insight into Al systems

(Example: Facebook likes and political leaning) Reference: <u>Praet et al., 2018</u>



(Example: Facebook likes and political leaning) Reference: <u>Praet et al., 2018</u>



- Interpretability issues
- \rightarrow Complexity of model
- \rightarrow High dimensionality + sparsity + many relevant predictors

Rule extraction (e.g., Baesens et al., 2003, Martens et al., 2007, Guidotti et al., 2018)

- Explanation rules mimic predictions of model
- Limited complexity \rightarrow small set of rules
- Model predictions are used as labels instead of ground-truth labels

Rule extraction (e.g., Baesens et al., 2003, Martens et al., 2007, Guidotti et al., 2018)

- Explanation rules mimic predictions of model
- Limited complexity \rightarrow small set of rules
- Model predictions are used as labels instead of ground-truth labels

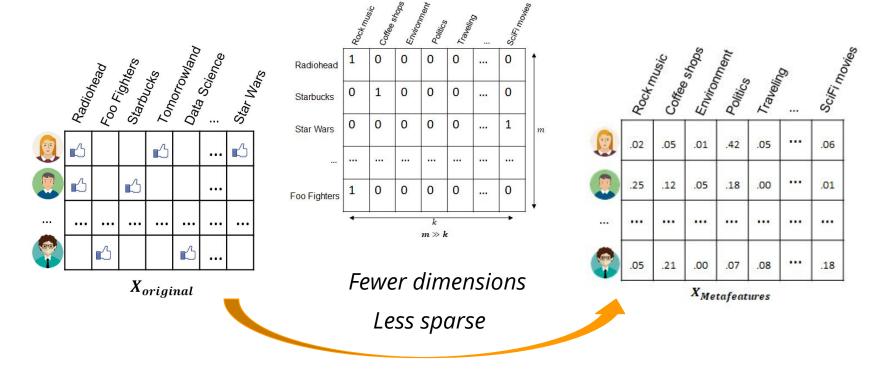
Challenge: High dimensionality + sparsity + many relevant predictors

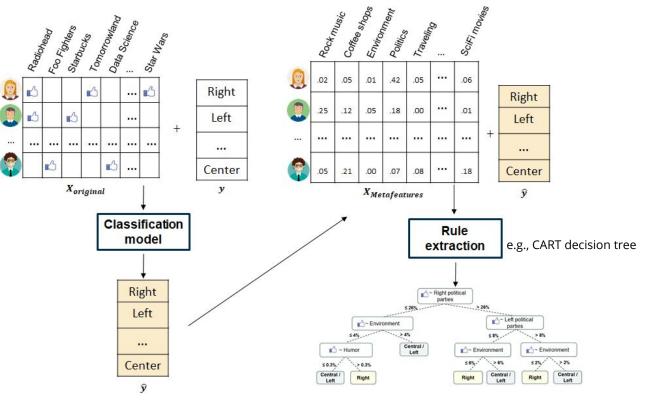
Rule extraction (e.g., Baesens et al., 2003, Martens et al., 2007, Guidotti et al., 2018)

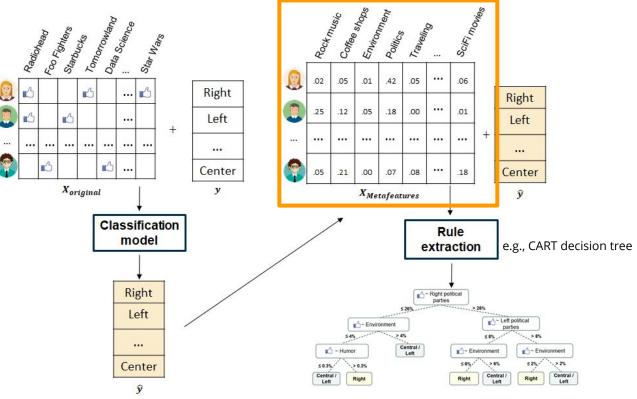
- Explanation rules mimic predictions of model
- Limited complexity \rightarrow small set of rules
- Model predictions are used as labels instead of ground-truth labels

Challenge: *High dimensionality* + *sparsity* + *many relevant predictors* Small explanation does not explain much of the model's behavior

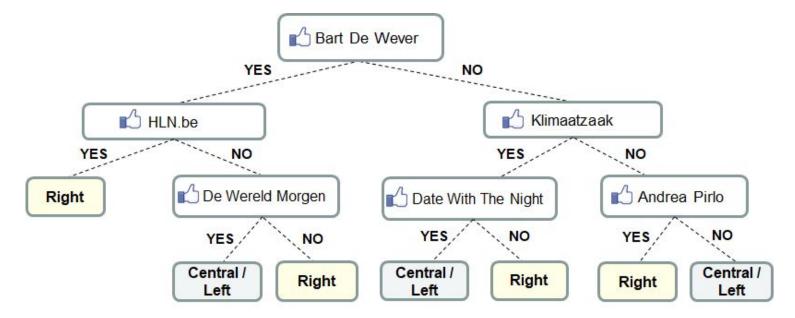
Original features	Metafeatures	
Social media (e.g., Facebook likes)	Categories	
Financial transactions (e.g., Carrefour)	Spending categories (e.g., Grocery stores)	
Location data (e.g., Starbucks)	Venue types (e.g., Coffee shops)	
Movie viewing data	Movie genres	
Text data (e.g., Google searches)	Topics	
Browsing behavior	Website categories	





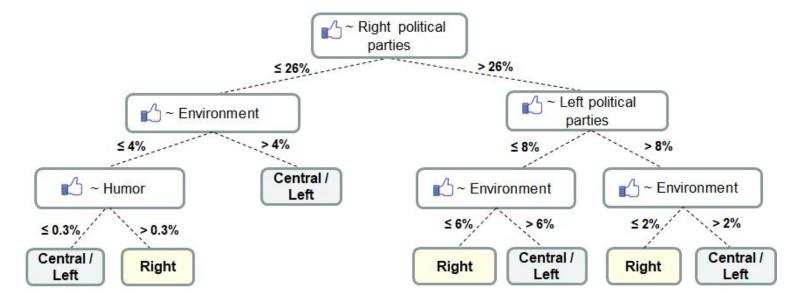


Example: Explanation rules with Facebook pages

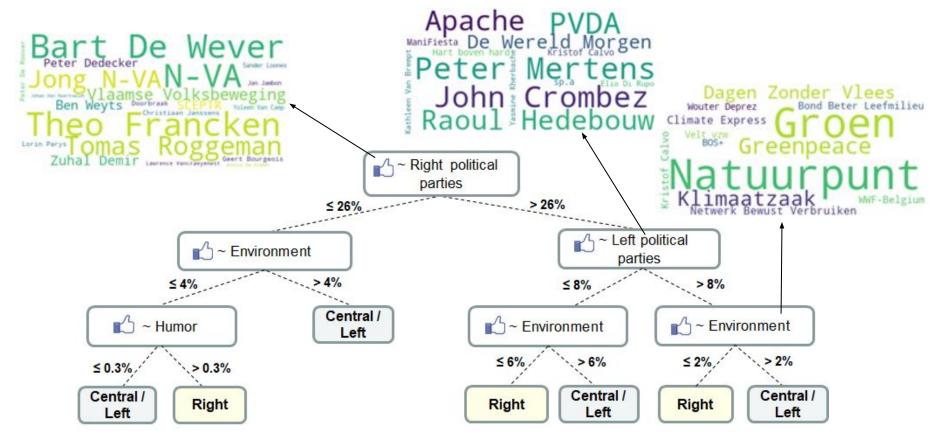


Note: Explanation rules for Logit model on all Facebook likes to predict political leaning.

Example: Explanation rules with metafeatures



Note: Explanation rules for Logit model on all Facebook likes. Data-driven metafeatures via non-negative matrix factorization (k=70).



Note: Explanation rules for Logit model on *all* Facebook likes. Data-driven metafeatures via non-negative matrix factorization (k=70).

Empirical question

Do explanation rules extracted with metafeatures result in better approximations of the model on behavioral data than explanations with the original features?

Empirical question

Do explanation rules extracted with metafeatures result in **better approximations** of the model on behavioral data than explanations with the original features?

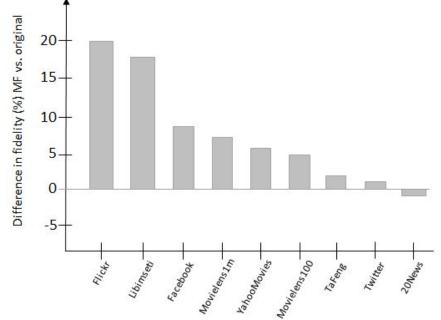
Evaluation

Fidelity \rightarrow How well do explanation rules approximate the model?

Ground-truth labels	Predictions of model	Predictions of rules
1	1	1
1	0	0
0	1	1
1	1	0
Accu of predict	iracy Fide ion model of explana	elity ation rules

Results: fidelity \uparrow when using metafeatures to explain

Difference in fidelity (%) MF vs. original features



Note: Explanation rules for Logit on all features. Similar results for explanations of Random Forest model.

- Validation and insight

- Validation and insight
- Ethics

Amazon scraps secret AI recruiting tool that showed bias against women Reference: Reuters, 2018

Hiring algorithms are being put to the test Reference: <u>MIT Technology Review, 2021</u>

Algorithms drive online discrimination, academic warns

Reference: Financial Times, 2019

- Validation and insight
- Ethics
- Improvement

- Validation and insight
- Ethics
- Improvement

Example: Document classification

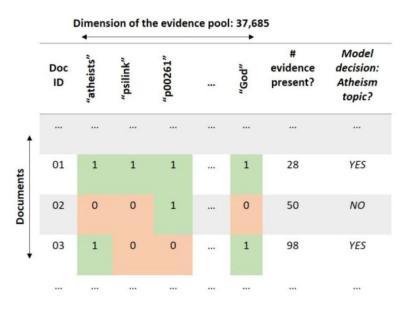
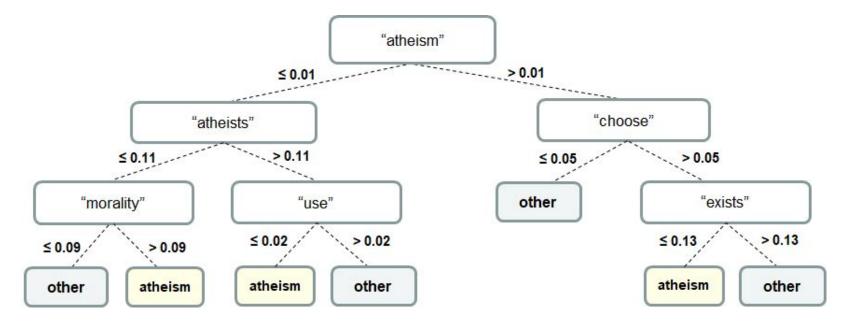


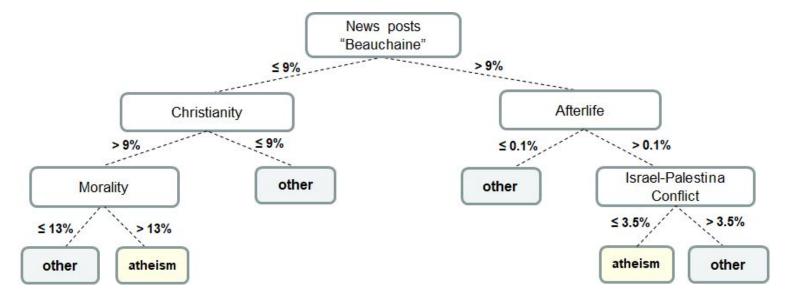
Figure 3a: 20 Newsgroups data to predict "Atheism" topic

Example: Explanation rules with words

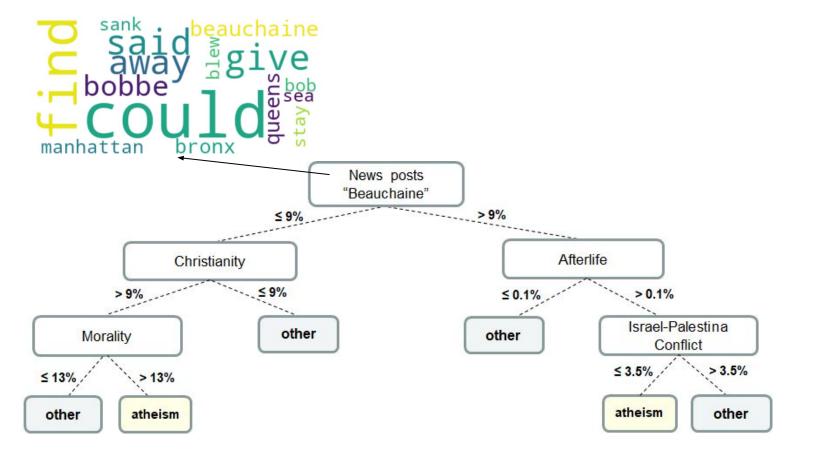


Note: Explanation rules for Logit model on all words in 20news data (tf-idf representation) to predict topic "Atheism". Reference: Ramon et al., 2020

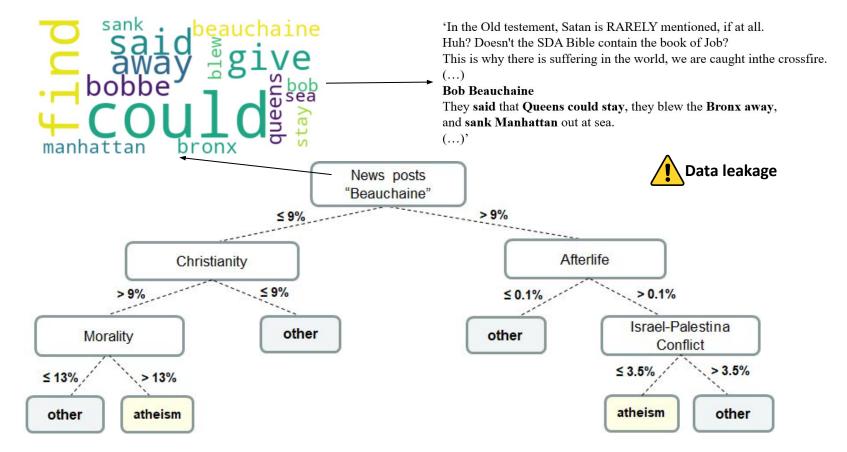
Example: Explanation rules with metafeatures



Note: Explanation rules for Logit model on all words. Data-driven metafeatures via non-negative matrix factorization (k=30). Reference: Ramon et al., 2020



Note: Explanation rules for Logit model on *all* words. Data-driven metafeatures via non-negative matrix factorization (k=30). *Reference: <u>Ramon et al., 2020</u>*



Note: Explanation rules for Logit model on all words. Data-driven metafeatures via non-negative matrix factorization (k=30). Reference: Ramon et al., 2020

Key takeaways

To gain insight into prediction models on behavioral data

To gain insight into prediction models on behavioral data

 \rightarrow use higher-level, less-sparse "metafeatures" to explain the model

To gain insight into prediction models on behavioral data

 \rightarrow use higher-level, less-sparse "metafeatures" to explain the model

Why?

To gain insight into prediction models on behavioral data

 \rightarrow use higher-level, less-sparse "metafeatures" to explain the model

Why?

 \rightarrow better approximation of model than explanations with original features

To gain insight into prediction models on behavioral data

 \rightarrow use higher-level, less-sparse "metafeatures" to explain the model

Why?

- \rightarrow better approximation of model than explanations with original features
- \rightarrow different types of information about model's behavior

Thanks!

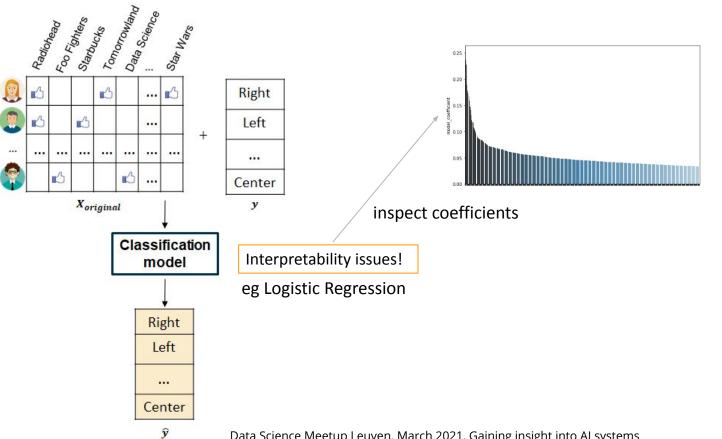
Yanou Ramon

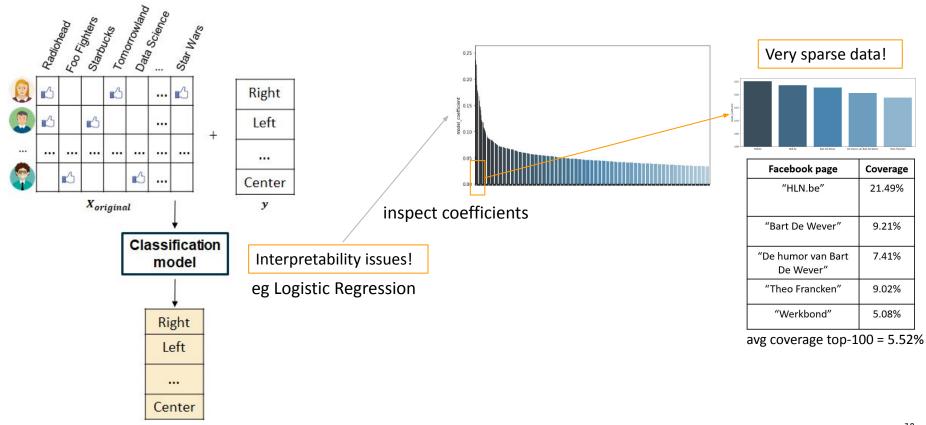
Prof. David Martens

Prof. Theodoros Evgeniou

Stiene Praet

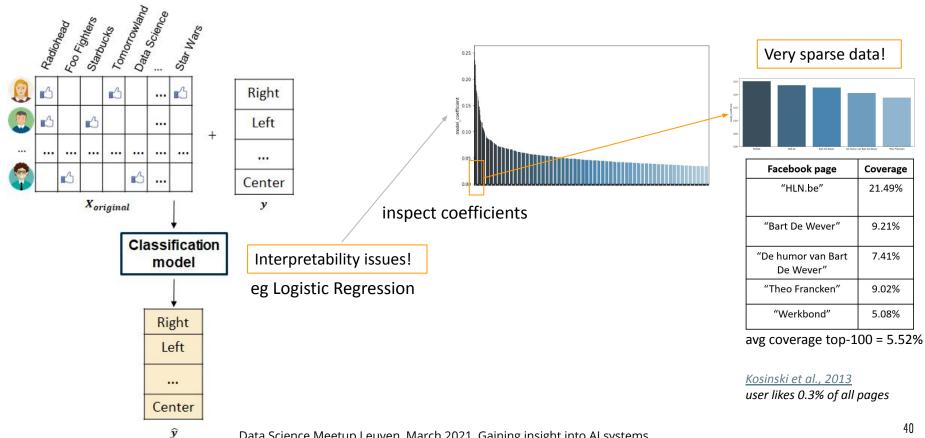
Ramon Y, Martens D, Evgeniou T, Praet S, Metafeatures-based rule extraction for classifiers on behavioral and textual data, 2020, preprint: <u>https://arxiv.org/abs/2003.04792</u>

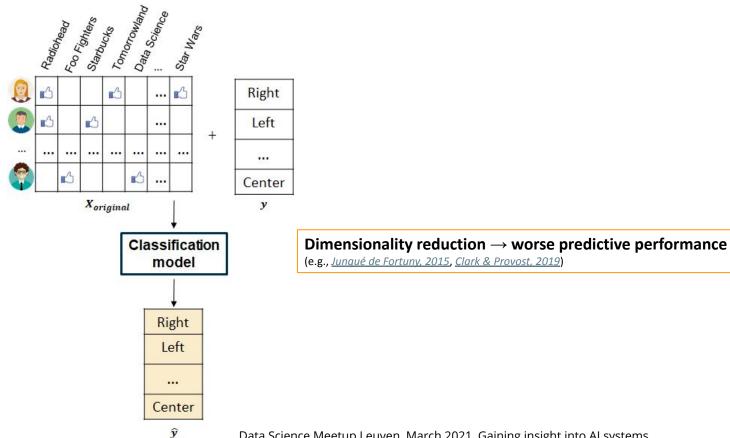




Data Science Meetup Leuven, March 2021, Gaining insight into Al systems

ŷ





Extra: Gaining insight into prediction models on behavioral data

