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• Applications using high-dimensional, sparse data are ample 

Behavioral data 
payment data, visited websites or physical locations, FB likes etc.

Textual data
emails, news articles, Twitter posts etc.



High-dimensional + sparse    Gender prediction using 

movie viewing data 
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ACTIVE FEATURE = “EVIDENCE”

1. INTRODUCTION
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• High predictive performance  complex models
• Interpretability issues: how are predictions made?
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• High predictive performance  complex models
• Interpretability issues: how are predictions made?

Relevance?

• Ethical objectives eg, privacy, fairness, safety
• Model improvements eg, debugging
• Trust/acceptance
• …
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• High predictive performance  complex models
• Interpretability issues: how are predictions made?

• Ethical objectives eg, privacy, fairness, safety 
• Model improvements eg, debugging
• Trust/acceptance
• …

INSTANCE-LEVEL EXPLANATIONS

1. INTRODUCTION
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“Which model-agnostic, instance-level explanation
algorithm is most suitable for explaining model predictions                                                     

of classifiers built from textual/behavioral data?”

• Overview and selection of instance-level explanation methods
(literature review)

• Selection of quantitative criteria
• Comparison using behavioral/textual data
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Selection criteria

• Model-agnostic methods treat the model as a black-box
• Computational ability to cope with high-dimensional data
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Selection criteria

• Model-agnostic methods treat the model as a black-box
• Computational ability to cope with high-dimensional data

• Evidence Counterfactual (EDC) (Martens & Provost, 2013)

• Linear Interpretable Model-Agnostic Explainer (LIME)                          
(Ribeiro et al., 2016)

• Shapley Additive Explanations (SHAP) (Lundberg & Lee, 2017)                                                         
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Evidence Counterfactual

• Minimal set of features so that “removing” them results in a 
predicted class change

• Removing set feature value to zero
• Model-agnostic algorithm (SEDC) based on heuristic best-first 

Check active
features 

Explanation 
found

Expand best-first
feature (set) with 

one feature 

Class change?

Class change?
Yes

Yes

No

No
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Evidence Counterfactual – example 

Example: gender prediction using movie viewing data

User xi: Sam

Sam watched 120 movies
Sam is predicted as male
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Evidence Counterfactual – example

Example: gender prediction using movie viewing data

User xi: Sam

Sam watched 120 movies
Sam is predicted as male

WHY?
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Evidence Counterfactual – example

Example: gender prediction using movie viewing data

User xi: Sam

IF Sam would not have watched {Taxi driver, The Dark Knight, Die 
Hard, Terminator 2, Now You See Me, Interstellar}, THEN his 
predicted class would change from male to female 
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Evidence Counterfactual – example

Example: gender prediction using movie viewing data

User xi: Sam

IF Sam would not have watched {Taxi driver, The Dark Knight, Die 
Hard, Terminator 2, Now You See Me, Interstellar}, THEN his 
predicted class would change from male to female 

POSITIVE EVIDENCE = EVIDENCE FOR A PREDICTED CLASS
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LIME / SHAP

• Explanation model: sparse, linear model
• Explanation model approximates original model in the 

neighborhood of the instance
• Perturbed instances

Source: Ribeiro et al., 2016 
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LIME / SHAP – differences 

• How they generate perturbed samples
• Distance function 
• Complexity control 

Source: Ribeiro et al., 2016 
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LIME – example

Example: gender prediction using movie viewing data

User xi: Sam
k = 10 features 
(feature selection)

0.211 Die Hard

0.205 Mission impossible

0.202 Saving private Ryan

0.197 Now You See Me

0.192 Taxi driver

0.186 Tarzan

0.183 Terminator 2

Stop making sense               −0.187

Badlands          −0.031

Love, Rosie   −0.027
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LIME – example 

Example: gender prediction using movie viewing data

User xi: Sam
k = 10 features 
(feature selection)

0.211 Die Hard

0.205 Mission impossible

0.202 Saving private Ryan

0.197 Now You See Me

0.192 Taxi driver

0.186 Tarzan

0.183 Terminator 2

Stop making sense               −0.187

Badlands          −0.031

Love, Rosie   −0.027

BOTH POSITIVE & 
NEGATIVE EVIDENCE



2. EXPLANATION METHODS

19

SHAP – example 

Example: gender prediction using movie viewing data

User xi: Sam
Lasso regularization

0.211 Die Hard

0.205 Mission impossible

0.202 Saving private Ryan

0.197 Now You See Me

0.192 Taxi driver

0.186 Tarzan

0.183 Terminator 2

Stop making sense               −0.187

Badlands          −0.031

Love, Rosie   −0.027

…
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SHAP – example 

Example: gender prediction using movie viewing data

User xi: Sam
Lasso regularization

0.211 Die Hard

0.205 Mission impossible

0.202 Saving private Ryan

0.197 Now You See Me

0.192 Taxi driver

0.186 Tarzan

0.183 Terminator 2

Stop making sense               −0.187

Badlands          −0.031

Love, Rosie   −0.027

…

BOTH POSITIVE & 
NEGATIVE EVIDENCE



3. EVALUATION CRITERIA

21

NOT a qualitative evaluation 
No evaluation of counterfactual versus linear model, negative

evidence, output size etc.

Counterfactual Additive feature attribution

vs
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NOT a qualitative evaluation 
No evaluation of counterfactual versus linear model, negative

evidence, output size etc.

Counterfactual Additive feature attribution

vs
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1. Effectiveness
• Switching point: number of features (with positive weight) that 

need to be removed before the classification changes
• % of switching points found
• % generated output
• Output size

2.   Efficiency
• Computation time: number of seconds to generate 

explanation

3. EVALUATION CRITERIA
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Collect data sets 
and build models

Textual data: 
linear/rbf SVM

Behavioral data: 
LR/MLP

Table 1: Data sets and characteristics
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Collect data sets 
and build models

Textual data: 
linear/rbf SVM

Behavioral data: 
LR/MLP

Generate 
explanations for 

test instances

EDC 

LIME 

SHAP 

≤ 30

= 10

Positively-predicted 
test instances

Time limit: ≤10min 

Default settings
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Collect data sets 
and build models

Textual data: 
linear/rbf SVM

Behavioral data: 
LR/MLP

Generate 
explanations for 

test instances

EDC 

LIME 

SHAP 

≤ 30

= 10

Positively-predicted 
test instances

Time limit: ≤10min 

Default settings

Evaluation

% generated 
output

Output size

% switching point 
found

Switching point

Computation time
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Collect data sets 
and build models

Textual data: 
linear/rbf SVM

Behavioral data: 
LR/MLP

Generate 
explanations for 

test instances

EDC 

LIME 

SHAP 

≤ 30

= 10

Positively-predicted 
test instances

Time limit: ≤10min 

Default settings

Evaluation

% generated 
output

Output size

% switching point 
found

Switching point

Computation time

Subset of instances 
for which output

is generated 

Subset of instances 
with SP
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5. RESULTS
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5. RESULTS

Fig. 3: Computation time vs switching point for Facebook/linear
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Ability to rank positive evidence  Switching point 
• EDC provides optimal (smallest) switching points for linear models 
• Heuristic best-first algoritm EDC: worse than LIME/SHAP for some non-linear 

models

Percentage output generated
• When restricting the output size (≤ 30), EDC not always generates output
• SHAP difficulties with Fraud data

Explanation output size
• EDC provides smallest output sizes
• LIME can be further reduced if wanted
• SHAP cannot be explicitly restricted (≥ 50% of active features included)

Computational efficiency 
• Instances that are small and/or “easy” to explain with counterfactuals 
 EDC is most efficient
• LIME and SHAP relatively fast for all scenarios
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Comparative study of instance-level explanations EDC, 
LIME and SHAP for textual and behavioral data

A nuanced conclusion:

• EDC seems best for small instances and linear models
• SHAP

• Consistently relatively fast
• Low switching points
• Seems to have difficulties with highly-imbalanced data
• Very large outputs

• LIME: best trade-off
• Consistently relatively fast 
• Low switching points
• Ability to provide k



8. FURTHER RESEARCH
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1. Extension of quantitative evaluation
• More data and models

2.   Application (eg marketing, fraud detection)
• Specific business needs / domain experts
• Visualization of explanations
• Meta-features  fine-grained features

3.   Qualitative evaluation of explanations
• Relevance of negative evidence?
• Counterfactual versus sparse, linear model?



Thanks for your attention.
Questions?

https://www.linkedin.com/in/yanou-ramon

http://applieddatamining.com/cms/

yanou.ramon@uantwerp.be


