A comparative study of instance-level explanations for big, sparse data

Yanou Ramon, David Martens Applied Data Mining

19th of March, 2019 ECDA (University of Bayreuth, Germany)

• Applications using **high-dimensional**, **sparse** data are ample

Behavioral data

payment data, visited websited or physical locations, FB likes...

Textual data emails, news articles, Twitter posts...

High-dimensional & sparse -> Gender prediction using movie ACTIVE FEATURE = "EVIDENCE" viewing data

6,040 users

- High predictive **performance** \Leftrightarrow **complex** models
- Interpretability issues: how are predictions made?

- High predictive **performance** \Leftrightarrow **complex** models
- Interpretability issues: how are predictions made?

- Ethical objectives: privacy, fairness, safety
- Model improvement: debugging, data problems
- Trust/acceptance

- High predictive **performance** \Leftrightarrow **complex** models
- Interpretability issues: how are predictions made?

- Ethical objectives: privacy, fairness, safety
- Model improvement: debugging, data problems
- Trust/acceptance

Instance-level explanations

"Which instance-level explanation method is most suitable for explaining model predictions on high-dimensional, sparse data?"

- Selection of quantitative criteria
- Comparison using behavioral/textual data

Selection criteria

- Model-agnostic method: treats model as a black box
- Computational ability to cope with high-dimensional data

Selection criteria

- Model-agnostic method: treats model as a black box
- Computational ability to cope with high-dimensional data

- Evidence Counterfactual (EDC) (Martens & Provost, 2013)
- Linear Interpretable Model-Agnostic Explainer (LIME) (Ribeiro et al., 2016)
- Shapley Additive Values (SHAP) (Lundberg & Lee, 2017)

Evidence counterfactual

- Minimal set of features so that removing them results in a predicted class change
- "Removing" → set feature value to zero / remove evidence
- Model-agnostic algorithm based on heuristic best-first search

Evidence counterfactual – example

Example: gender prediction using movie viewing data

User x_i: Sam

Sam watched 120 movies Sam is predicted as male

Evidence counterfactual – example

Example: gender prediction using movie viewing data

User x_i: Sam

Sam watched 120 movies Sam is predicted as male

Evidence counterfactual – example

Example: gender prediction using movie viewing data

User x_i: Sam

IF Sam would not have watched *{Taxi driver, The Dark Knight, Die Hard, Terminator 2, Now You See Me, Interstellar}, THEN his predicted class would change from male to female*

Evidence counterfactual – example

Example: gender prediction using movie viewing data

User x_i: Sam

IF Sam would not have watched *{Taxi driver, The Dark Knight, Die Hard, Terminator 2, Now You See Me, Interstellar}, THEN his predicted class would change from male to female*

POSITIVE EVIDENCE = EVIDENCE FOR A PREDICTED CLASS

LIME / SHAP

- Explanation model: **sparse, linear model**
- Explanation model approximates original model in the neighborhood of the instance
- Perturbed instances

LIME – example

Example: gender prediction using movie viewing data

User x_i: Sam *k* = 10 features (feature selection)

LIME – example

Example: gender prediction using movie viewing data

SHAP – example

User x_i: Sam

Example: gender prediction using movie viewing data

SHAP – example

Example: gender prediction using movie viewing data

\Rightarrow **<u>NOT</u>** a **qualitative** evaluation

⇒ No evaluation of counterfactual vs linear model, negative evidence, output size, coefficients etc.

VS

Counterfactual

IF Sam would not have rated *{Taxi driver, North by Northwest, Bridge on the river Kwai, Terminator 2, Hunt for red October, Glengarry Glen Ross}*, THEN his predicted class would change from male to female

Additive feature attribution

\Rightarrow **<u>NOT</u>** a **qualitative** evaluation

⇒ No evaluation of counterfactual vs linear model, negative evidence, output size, coefficients etc.

VS

Counterfactual

IF Sam would not have rated *{Taxi driver, North by Northwest, Bridge on the river Kwai, Terminator 2, Hunt for red October, Glengarry Glen Ross}*, THEN his predicted class would change from male to female

Additive feature attribution

For a set of model predictions, we want:

For a set of model predictions, we want:

- (1) to **generate** an explanation **output**
 - ➔ Percentage of output generated

For a set of model predictions, we want: (1) to generate an explanation output → Percentage of output generated

(2) that is sparse to be interpretable by humans
 → Average output size

For a set of model predictions, we want: (1) to generate an explanation output → Percentage of output generated

(2) that is sparse to be interpretable by humans
 → Average output size

(3) that is efficient to compute
 Average computation time

For a set of model predictions, we want:
(1) to generate an explanation output
→ Percentage of output generated

(2) that is sparse to be interpretable by humans
 → Average output size

(3) that is efficient to compute
 → Average computation time

(4) that is able to **rank <u>positive</u> evidence from high to low relative importance**

➔ Average size of switching point

= number of features that need to be removed to change predicted class (only positive evidence)

4. Experimental setup Generate Collect data sets **Results &** Evaluation explanations for and build models discussion test instances % output EDC **≤ 10** Text data: linear Subset of instances generated for which output and rbf SVM is generated LIME = 10 **20NEWS** Avg output size Avg computation Behavioral data: SHAP time LR and MLP Subset of instances with SP **Positively predicted MOVIELENS** Avg switching point Measured on test instances unrestricted output sizes **Small output sizes** Time limit: ≤10min

5. Results

Table 1: Percentage generated for <u>linear</u> models (left) and <u>nonlinear</u> models (right)

Data set	Method	Percentage output generated		
Movielens	EDC ≤ 10	75.5%		
n = 302 ṁ = 327	LIME=10	100%		
Model: LR	SHAP	100%		
20news	EDC ≤ 10	92.1%		
n = 151 ṁ = 69	LIME=10	100%		
Model: lin-SVM	SHAP	100%		

Data set	Method	Percentage output generated
Movielens	EDC ≤ 10	50.99%
n = 302 ṁ = 315	LIME=10	100%
Model: MLP	SHAP	100%
20news	EDC ≤ 10	93.38%
n = 151 ṁ = 66	LIME=10	100%
Model: rbf-SVM	SHAP	100%

Figure 1 (a): Average absolute output size

Figure 1 (b): Average relative output size

6. Discussion

Percentage output generated

• When restricting the output size (≤ 10), EDC does *not always* generate output

Explanation output size

- EDC provides *smallest* output sizes
- LIME can be *further reduced* if wanted
- SHAP cannot be *explicitly* restricted, ≥ 50% of active features included

Computational efficiency

- For small outputs and linear models, EDC is most efficient
- LIME and SHAP relatively fast for all scenarios

Ability to rank positive evidence **→** switching point

- EDC provides smallest switching points for *linear* models
- Greedy approach EDC: worse results than LIME/SHAP for *some* non-linear models

7. Conclusion

A comparative study of instance-level explanations for big, sparse data

- \Rightarrow A **nuanced** conclusion:
- **EDC** seems best for smaller output sizes and linear models
- SHAP
 - Consistently relatively fast
 - Switching points close to the best
 - Very large outputs
- LIME: good trade-off
 - Consistently relatively fast → most stable
 - Switching points close to the best
 - Ability to provide k

8. Further research

1. Adjustments of methods

Adjust or combine methods → optimal approach

2. Extension of quantitative evaluation

- More data
- More models

3. Qualitative evaluation of explanation methods

- Relevance of negative evidence
- Counterfactual versus sparse, linear model

Thanks for your attention. **Questions?**

https://www.linkedin.com/in/yanou-ramon

http://applieddatamining.com/cms/

References

Flach, P., & Sokol, K. (2018). *Counterfactual explanations of machine learning predictions: opportunities and challenges for AI safety.* Miller, T. (2017). *Explanation in Artificial Intelligence: Insights from the Social Sciences.*

Martens, D. & Provost, F. (2013). *Explaining data-driven document classifications*. MIS Quarterly. 38(1), p.73-100.

Wachter, S., Mittelstadt, B., & Russell, C. (2017). *Counterfactual explanations without opening the black box: automated decisions and the GDPR.* Ribeiro, M. T., Singh S., & Guestrin, C. (2016). *"Why should I trust you?": Explaining the predictions of any classifier.* Proceedings of KDD '16, p.1135-

1144.

Lundberg, S. M., & Lee, S.-I. (2017). A Unified Approach to Interpreting Model *Predictions*.

Nguyen, D. (2017). *Comparing automatic and human evaluation of local explanations for text classification.*

References

Doshi-Velez, F., & Kim, B. (2017). *Towards a rigorous science of interpretable machine learning.* arXiv preprint arXiv: 1702.08608,

Huysmans, J., Dejaeger, K., Mues, C., Vanthienen, J., & Baesens, B. (2013). An empirical evaluation of the comprehensibility of decision table, tree and rule based predictive models.

Moeyersoms J, d'Alessandro B, Provost F, & Martens D. (2016). *Explaining classification models built on high-dimensional sparse data*. 2016 ICML Workshop on Human Interpretability in Machine Learning (WHI 2016). New York, p. 36–40.

Tamagnini, P., Krause, J., Dasgupta, A., & Bertini, E. (2017). *Interpreting black-box classifiers using instance-level visual explanations*.

De Cnudde, S., Martens, D., Evgeniou, T., & Provost, F. (2017). A benchmarking study of classification techniques for behavioral data.

Arras, L., Horn, F., Montavon, G., Muller, K.-R., & Samek W. (2016). *Explaining predictions of non-linear classifiers in NLP.* Proceedings of the 1st Workshop on representation learning for NLP, p.1-7.

LIME / SHAP

Perturbation: set feature value to zero / remove "evidence"

			Movie 1	Movie 2	Movie 3	Movie 4	÷	Movie m-1	Movie m	Original predicted score
Original insta	ance:	User x	1	1	0	1		1	1	0.96
										Dradictad
	Weights		Movie 1	Movie 2	Movie 3	Movie 4	÷	Movie m-1	Movie m	score (new label)
	w1	z1	1	0	0	1		1	1	0.94
Perturbed	w2	z2	0	0	0	0		1	1	0.92
instances:	w3	z3	1	0	0	1		0	0	0.93

→ TRAIN SPARSE, LINEAR MODEL

• Switching point for EDC:

Relative importance

{Taxi Driver, The Dark Knight, Die Hard, Terminator 2, Now You See Me} Switching point = output size = 5

• Switching point for LIME/SHAP:

To compare switching point, <u>all</u> methods should find one

EDC: Relative importance {Taxi Driver, The Dark Knight, Die Hard, Terminator 2, Now You See Me} → Switching point = 5

LIME for k=6:→ No switching point found

To compare switching point, <u>all</u> methods should find one

EDC: Relative importance
{Taxi Driver, The Dark Knight, Die Hard, Terminator 2, Now You See Me}
→ Switching point = 5

LIME for k=6: → No switching point found

No comparison possible of ability to rank positive evidence from high to low relative importance

To compare switching point, <u>all</u> methods should find one

EDC: Relative importance {Taxi Driver, The Dark Knight, Die Hard, Terminator 2, Now You See Me} → Switching point = 5

LIME for **k=6** k=#active features: → No switching point found

No comparison possible of ability to rank positive evidence from high to low relative importance

→ UNRESTRICT output size to measure switching point

Example:

Relative importance

EDC output: {Taxi Driver, Titanic, E.T., Taken, Gone girl}

→ Output size = switching point = 5

Option 1:

Example:

Relative importance

EDC output: {Taxi Driver, Titanic, E.T., Taken, Gone girl}

 \rightarrow Output size = switching point = 5

LIME output for **k=6** k=#active features:

Option 2:

SP LIME > SP EDC ⇒ EDC is more effective in ranking positive evidence from high to low relative importance on instance-level

Figure 4: Average relative switching point

5. Results

Table 1: Percentage generated & output size for LINEAR models

Data set	Textual/ behavioral	Explainer	Percentage output generated	Average output size	Average relative output size	
Movielens	Behavioral	EDC ≤ 10	75.5%	4.1 (2.7)	0.02 (0.02)	
n = 302 ṁ = 327 Model: LR		LIME=10	100%	10.0 (0)	0.07 (0.04)	
		SHAP	100%	195.5 (112.6)	0.8 (0.1)	
20news	Textual	EDC ≤ 10	92.1%	2.4 (1.9)	0.07 (0.1)	
n = 151 ṁ = 69		LIME=10	100%	10 (0)	0.5 (1.2)	
Model: lin-SVM		SHAP	100%	29.1 (22.4)	0.6 (0.3)	

(Standard deviations in parentheses)

5. Results

Table 2: Percentage generated & output size for <u>NONLINEAR</u> models

Data set	Textual/ behavioral	Explainer	Percentage output generated	Average output size	Average relative output size	
Movielens	Behavioral	EDC ≤ 10	50.99%	2.6 (2.2)	0.02 (0.03)	
n = 302 ṁ = 315 Model: MLP		LIME=10	100%	10 (0)	0.07 (0.1)	
		SHAP	100%	174.95 (107.95)	0.9 (0.1)	
20news	Textual	EDC ≤ 10	93.38%	2.3 (1.98)	0.08 (0.1)	
n = 151 ṁ = 66		LIME=10	100%	10 (0)	0.5 (1.2)	
Model: rbf-SVM		SHAP	100% 31.8 (24.4)		0.7 (0.3)	

(Standard deviations in parentheses)